Sha256: 7d8a74045baf197a32d05281dab87b541cfb4847a4f5081058d9e6c20a7e6022
Contents?: true
Size: 1.28 KB
Versions: 2
Compression:
Stored size: 1.28 KB
Contents
% c_dtype = dtype_to_c_type(dtype) // same dimension add floating point op __kernel void apply_adadelta_<%= dtype %>(const int M, const int N, __global const <%= c_dtype %> *lr, __global const <%= c_dtype %> *rho, __global const <%= c_dtype %> *epsilon, __global const <%= c_dtype %> *grad, __global <%= c_dtype %> *output, __global <%= c_dtype %> *acc, __global <%= c_dtype %> *acc_update ) { // Get the index of the current element to be processed const int globalRow = get_global_id(0); // Row ID of C (0..M) const int globalCol = get_global_id(1); // Col ID of C (0..N) const int index = globalRow * N + globalCol; acc[index] = acc[index] * rho[0] + (grad[index] * grad[index]) * ((<%= c_dtype %>)1 - rho[0]); const <%= c_dtype %> update = sqrt(acc_update[index] + epsilon[0]) * rsqrt(acc[index] + epsilon[0]) * grad[index]; output[index] -= update * lr[0]; acc_update[index] = acc_update[index] * rho[0] + update * update * ((<%= c_dtype %>)1 - rho[0]); }
Version data entries
2 entries across 2 versions & 1 rubygems
Version | Path |
---|---|
tensor_stream-opencl-0.1.3 | lib/tensor_stream/opencl/kernels/apply_adadelta.cl |
tensor_stream-opencl-0.1.2 | lib/tensor_stream/opencl/kernels/apply_adadelta.cl |