=begin =extension of class NumRu::GPhys -- Fast Fourier transformation and its applications This manual documents the methods of NumRu::GPhys defined in gphys_fft.rb =class methods ---GPhys::fft_ignore_missing( ignore=true, replace_val=nil ) Set a flag (class variable) to ignore missing values. This is for data that do not have missing but is treated as potentially having missing (often by having the valid_* attributes of NetCDF.) If replace_val is specified, data missing with replaced with that value. =methods ---fft(backward=false, *dims) Fast Fourier Transformation (FFT) by using ((())) ver 3 or ver 2. A FFTW ver.2 interface is included in NArray, while to use FFTW ver.3, you have to install separately. Dimension specification by the argument dims is available only with ver.3. By default, FFT is applied to all dimensions. The transformation is complex. If the input data is not complex, it will be coerced to complex before transformation. When the FT is forward, the result is normalized (i.e., divided by the data number), unlike the default behavior of FFTW. Each coordinate is assumed to be equally spaced without checking. The new coordinate variables will be set equal to wavenumbers, derived as 2*PI/(length of the axis)*[0,1,2,..], where the length of the axis is derived as (coord.val.max - coord.val.min)*(n+1)/n. REMARK * If the units of the original coordinate is degree (or its equivalent ones such as degrees_east), the wavenumber was made in integers by converting the coordinate based on radian. ARGUMENTS * backward (true of false) : when true, backward FT is done; otherwise forward FT is done. * dims (integers) : dimensions to apply FFT RETURN VALUE * a GPhys EXAMPLE gphy.fft # forward, for all dimensions gphy.fft(true) # backward, for all dimensions gphy.fft(nil, 0,1) # forward, for the first and second dimensions. gphy.fft(true, -1) # backward, for the last dimension. ---detrend(dim1[,dim2[,...]]) Remove means and linear trends along dimension(s) specified. Algorithm: 1st order polynomial fitting. ARGUMENTS * dim? (Integer of String): the dimension along which you want to remove trends. RETURN VALUE * a GPhys EXAMPLE * See (()). ---cos_taper(dim1[,dim2[,...]]) Cosine tapering along dimension(s) specified. Algorithm: to multiply with the half cosine curves at the both 1/10 ends of the data. cos taper shape: _____________ _/ \_ -> <- -> <- T/10 T/10 half-cosine half-cosine shaped shaped The spectra of tapered data should be multiplied by 1/0.875, which is stored as GPhys::COS_TAPER_SP_FACTOR (==1/0.875). ARGUMENTS * dim? (Integer of String): the dimension along which you want to remove trends. RETURN VALUE * a GPhys EXAMPLE dim = 0 # for the 1st dimension fc = gphys.detrend(dim).cos_taper(dim).fft(nil,dim) sp = fc.abs**2 * GPhys::COS_TAPER_SP_FACTOR ---spect_zero_centering(dim) Shifts the wavenumber axis to cover from -K/2 to K/2 instead of from 0 to K-1, where the wavenumber is symbolically treated as integer, which is actually not the case, though. Since the first (-K/2) and the last (K/2) elements are duplicated, both are divided by 2. Therefore, this method is to be used for spectra (squared quantity) rather than the raw Fourier coefficients. (That is why the method name is prefixed by "spect_"). The method is applied for a single dimension (specified by the argument dim). If you need to apply for multiple dimensions, use it for multiple times. ARGUMENTS * dim (integer): the dimension you want to shift spectra elements. Count starts from zero. RETURN VALUE * a GPhys EXAMPLE * To get a spectra of a variable var along the 1st and 2nd dimensions: fc = var.fft(nil, 0,1) # --> Fourier coef sp = ( fc.abs**2 ).spect_zero_centering(0).spect_zero_centering(1) Note that spect_zero_centering is applied after taking |fc|^2. * Same but if you want to have the 2nd dimension one-sided: fc = var.fft(nil, 0,1) sp = ( fc.abs**2 ).spect_zero_centering(0).spect_one_sided(1) * Similar to the first example but for cross spectra: fc1 = var1.fft(nil, 0,1) fc2 = var2.fft(nil, 0,1) xsp = (fc1 * fc2.conj).spect_zero_centering(0).spect_zero_centering(1) ---spect_one_sided(dim) Similar to (()) but to make one-sided spectra. Namely, to convert from 0..K-1 to 0..K/2. To be applied for spectra; wavenumber 2..K/2-1 are multiplied by 2. ARGUMENTS * dim (integer): the dimension you want to shift spectra elements. Count starts from zero. RETURN VALUE * a GPhys EXAMPLE * See the 2nd example of (()). ---rawspect2powerspect(*dims) Converts raw spectra obtained by gphys.fft.abs**2 into power spectra by dividing by wavenumber increments along the dimensions specified by dims. ARGUMENTS * dims (integers): the dimensions corresponding to wavenumbers. RETURN VALUE * a GPhys EXAMPLE * Suppose a 2 (or more) dimensional data gphys. fc = gphys.fft(nil, 0, 1) sp = fc.abs**2 ps = sp.rawspect2powerspect(0,1) Here, sp is the raw spectrum of gphys, and ps is the power spectrum. The Parseval relation for them are as follows: (gphys**2).mean == sp.sum == pw.sum*dk*dl (== \int pw dk dl, mathematically), where, dk = (pw.coord(0)[1] - pw.coord(0)[0]), and dl = (pw.coord(1)[1] - pw.coord(1)[0]). ---phase_velocity_filter(xdim, tdim, cmin=nil, cmax=nil, xconv=nil, tconv=nil, remove_xtmean=false) Filtering by phase velocity (between cmin and cmax) REMARKS * If the number of the grid points along x or t is an even number, the maximum wavenumber or frequency is treated as positive and negative, respectively, which results in an asymmetry of the treatment of positive and negative phase speeds. (That should be ok. -- In case its effect is significant, to do the filtering itself is not meaningful.) ARGUMENTS * xdim (Integer or String): spacial dimension * tdim (Integer or String): time dimension * cmin (Float or nil): minimum phase velocity. nil means no specification. (at least cmin or cmax must be given by Float) * cmax (Float or nil): maximum phase velocity. nil means no specification. (at least cmin or cmax must be given by Float) * xconv (nil or UNumeric) : (optional) if given, xconv is multiplied with the x axis before computing the phase velocity (kconv=1/xconv is used to scale wavenumbers) * tconv (nil or UNumeric) : (optional) if given, tconv is multiplied with the t axis before computing the phase velocity (fconv=1/tconv is used to scale frequency) * remove_xtmean (false or true) : if false (default), components with k=0 and f=0 are counted as c=0 (stationary), (unlike (())), so they are included if cmin*cmax <= 0; if true, k=0 & f=0 components are always removed. RETURN VALUE * a GPhys EXAMPLE * For a 4D data with [x,y,z,t] dimensions, filtering by the phase velocity in the y dimension greater than 10.0 (in the unit of y/t) can be made by cmin = 10.0; cmax = nil gpfilt = gp.phase_velocity_filter(1, 3, cmin, cmax) * For a global data (on the Earth's surface) with [lon, lat, z, time] axes, where the units of lon is "degrees" (or "degrees_east" or "radian") and the units of time is "hours", to filter disturbances whose zonal phase speed MEASURED AT THE EQUATOR is less or equal to 30 m/s can be made by cmin = -30.0; cmax = 30.0 xconv = UNumeric[6.37e6, "m"] # Earth's radius (i.e., m/radian) # This is a special case since "radian" is exceptionally omitted. # See the private method __predefined_coord_units_conversion. tconv = UNumeric[3.6e3, "s/hours"] gpfilt = gp.phase_velocity_filter(1, 3, cmin, cmax, xconv, tconv) ---phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv=nil, fconv=nil) Same as (()) but exclusively for equal phase velocity spacing. Also, a normalization is additionally made, to scale spectra in terms of integration along phase velocity axis --- The result of (()) called inside this method is divided by cint along with corresponding units conversion. Therefore, if this method is applied to spectra, a normalization is made such that an integration (not summation) along the phase velocity gives the variance (or covariance etc.) -- This normalization is suitable to quadratic quantities (such as spectra) but is not suitable to raw Fourier coefficients. ARGUMENTS * kdim (Integer or String): see (()) * fdim (Integer or String): see (()) * cmin (Float) : minimum phase velocity * cmin (Float) : maximum phase velocity * cint (Float) : inter val with which the range [cmin and cmax] is divided. * kconv (nil or UNumeric) : see (()) * fconv (nil or UNumeric) : see (()) RETURN VALUE * a GPhys ---phase_velocity_binning(kdim, fdim, cbins, kconv=nil, fconv=nil) Bin a 2D spectrum in space and time based on phase velocity. The operand (self) must be Fourier coefficients or spectra, whose grid has not been altered since the call of the method fft (i.e., those that have not applied with zero centering etc, since it is done in this method). Binning by this method is based on summation, leaving the units unchanged. REMARKS * Components whose phase velocities are exactly equal to one of the boundaries are divided into the two bins half by half * components with k=0 and f=0 are excluded -- the spatio-temporal mean do not reflect in the result ARGUMENTS * kdim (Integer or String): wavenumber dimension (from spacial dimension) * fdim (Integer or String): frequency dimension (from time dimension) * cbins : an Array of bin bounds or a Hash of max, min, int e.g., [-10,-1,-0.1,0.1,11,10], {"min"=>-30,"max"=>30,"int"=>5} * kconv (nil or UNumeric) : (optional) if given, kconv is multiplied with the wavenumber axis before computing the phase velocity * fconv (nil or UNumeric) : (optional) if given, fconv is multiplied with the frequency axis before computing the phase velocity RETURN VALUE * a GPhys EXAMPLES * Example A fu = u.fft(nil, 0, 2) cfu = fu.phase_velocity_binning(0, 2, {"min"=>-1,"max"=>1,"int"=>0.1}) * Example B fu = u.fft(nil, 0, 2) pw = fu.abs**2rawspect2powerspect(0,2) # power spectrum cbins = [-100.0, -10.0, -1.0, 1.0, 10.0, 100.0] # logarithmic spacing cpw = pw.phase_velocity_binning(0, 2, cbins) * Example C fu = u.fft(nil, 0, 3) fv = v.fft(nil, 0, 3) kconv = UNumeric[1/6.37e6, "m-1"] fconv = UNumeric[1/3.6e3, "hours/s"] fuv = (fu * fv.conj) # cross spectra cfuv = fuv.phase_velocity_binning(0, 3, {"min"=>-50,"max"=>50,"int"=>5}, kconv, fconv) =end begin require "numru/fftw3" rescue LoadError end require "numru/gphys/gphys" module NumRu class GPhys @@fft_forward = -1 @@fft_backward = 1 @@fft_ignore_missing = false @@fft_missing_replace_val = nil def self.fft_ignore_missing( ignore=true, replace_val=nil ) @@fft_ignore_missing = ignore @@fft_missing_replace_val = replace_val end COS_TAPER_SP_FACTOR = 1.0 / 0.875 # Spectral factor for the cosine taper. # Specta should be multiplied by this. def cos_taper(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank nx = shape[dim] wgt = NArray.float(nx).fill!(1) x = 10.0 / nx * (NArray.float(nx).indgen!+0.5) wskl = x.lt(1).where wskr = x.gt(9).where wgt[wskl] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskl]) ) wgt[wskr] = 0.5*( 1.0 - NMath::cos(Math::PI*x[wskr]) ) wgt.reshape!( *([1]*dim + [nx] + [1]*(rank-dim-1)) ) val = val*wgt } to_ret = self.copy to_ret.data.val = val to_ret end def detrend(*dims) if dims.length < 1 raise ArgumentError,'You have to specify one or more dimensions' end dims.sort!.uniq! val = self.data.val dims.each{|dim| dim = dim_index(dim) if dim.is_a?(String) dim += rank if dim < 0 raise ArgumentError,"dim #{dim} does not exist" if dim<0 || dim>rank if val.is_a?(NArray) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 if denom != 0 a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom else a = 0 b = vmean end elsif val.is_a?(NArrayMiss) x = self.coord(dim).val x.reshape!( *([1]*dim + [x.length] + [1]*(rank-dim-1)) ) x = NArrayMiss.to_nam( NArray.new(x.typecode, *val.shape) + x, val.get_mask ) vmean = val.mean(dim) vxmean = (val*x).mean(dim) xmean = x.mean(dim) x2mean = (x*x).mean(dim) denom = x2mean-xmean**2 meq0 = denom.eq(0).to_na(0) # ==0 and not masked mne0 = denom.ne(0).to_na(0) # !=0 and not masked denom.set_mask(mne0) # only nonzero part will be used to divide: a = (vxmean - vmean*xmean)/denom b = (vmean*x2mean - vxmean*xmean)/denom a[meq0] = 0 b[meq0] = vmean[meq0] end a.newdim!(dim) if !a.is_a?(Numeric) b.newdim!(dim) if !b.is_a?(Numeric) val = val - a*x-b } to_ret = self.copy to_ret.data.val = val to_ret end def fft(backward=false, *dims) fftw3 = false if defined?(FFTW3) fftw3 = true elsif !defined?(FFTW) raise "Both FFTW3 and FFTW are not installed." end if backward==true dir = @@fft_backward elsif !backward dir = @@fft_forward else raise ArgumentError,"1st arg must be true or false (or, equivalenty, nil)" end # gfc = self.copy # make a deep clone if fftw3 val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW3.fft( val, dir, *dims ) else # --> always FFT for all dimensions if dims.length == 0 raise ArgumentError, "dimension specification is available only if FFTW3 is installed" end val = gfc.data.val if @@fft_ignore_missing and val.is_a?(NArrayMiss) if @@fft_missing_replace_val val = val.to_na(@@fft_missing_replace_val) else val = val.to_na end elsif val.is_a?(NArrayMiss) && val.count_invalid == 0 val = val.to_na end fcoef = FFTW.fftw( val, dir ) end if dir == @@fft_forward if dims.length == 0 fcoef = fcoef / fcoef.length # normalized if forward FT else sh = fcoef.shape len = 1 dims.each{|d| raise ArgumentError, "dimension out of range" if sh[d] == nil len *= sh[d] } fcoef = fcoef / len end end gfc.data.replace_val( fcoef ) # for i in 0...gfc.rank if dims.length == 0 || dims.include?(i) || dims.include?(i+rank) __predefined_coord_units_conversion(gfc.coord(i)) cv = gfc.coord(i).val n = cv.length clen = (cv.max - cv.min) * n / (n-1) wn = (2*Math::PI/clen) * NArray.new(cv.typecode,cv.length).indgen! if (!backward) gfc.coord(i).set_att('origin_in_real_space',cv[0..0]) else if ( org = gfc.coord(i).get_att('origin_in_real_space') ) wn += org[0] ###gfc.coord(i).del_att('origin_in_real_space') end end gfc.coord(i).replace_val(wn) gfc.coord(i).units = gfc.coord(i).units**(-1) __coord_name_conversion(gfc.coord(i), backward) end end # gfc end def fft_deriv(dim) tp = self.data.typecode fc = self.fft(false,dim) wn = fc.coord(dim) k = wn.val.to_type(NArray::Complex) n = k.length n2a = (n-1)/2 n2b = [n/2 + 1, n-1].min # min to avoid error if n=2 (though meaningless) kmx = k[-1]+k[1] ik = NArray.complex(n) ik[0..n2a] = k[0..n2a]*Complex::I ik[n2b..-1] = (k[n2b..-1]-kmx) * Complex::I dim.times{ik.newdim!(0)} (self.rank-dim-1).times{ik.newdim!(-1)} fc.replace_val(fc.val*ik) deriv = fc.fft(true,dim) deriv.units = deriv.units * wn.units if tp >= NArray::SCOMPLEX deriv else deriv.real end end def __predefined_coord_units_conversion(coord) case coord.units when Units["degree"] val = coord.val coord.replace_val( val * (Math::PI/180) ) coord.units = "radian" end end private :__predefined_coord_units_conversion def __coord_name_conversion(coord, backward) if !backward #--> forward ( ln = coord.get_att('long_name') ) && coord.set_att('long_name','wavenumber - '+ln) case coord.name when 'x' coord.name = 'k' when 'y' coord.name = 'l' when 'z' coord.name = 'm' # when 'lon','longitude' # coord.name = 's' when 't','time' if coord.units === Units['s-1'] # compatible_with? coord.name = 'omega' coord.set_att('long_name', 'angular frequency') end end else #--> backward if ( ln = coord.get_att('long_name') ) case ln when /^wavenumber -/ coord.set_att( 'long_name', ln.sub(/^wavenumber - */,'') ) when /angular frequency/ coord.set_att( 'long_name', 'time' ) end end case coord.name when 'k' coord.name = 'x' when 'l' coord.name = 'y' when 'm' coord.name = 'z' when 'omega' coord.name = 'time' end end end private :__coord_name_conversion def spect_zero_centering(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *( [true]*dim + [[(len+1)/2..len-1,0..len/2],false] ) ].copy s1 = [true]*dim + [0, false] s2 = [true]*dim + [-1, false] if (len % 2) == 0 #--> even number b[*s1] = b[*s1]/2 # the ends are duplicated --> halved b[*s2] = b[*s1] end b.coord(dim)[0..len/2-1] = -b.coord(dim)[len/2+1..-1].val[-1..0] b end def spect_one_sided(dim) dim = dim + self.rank if dim<0 len = self.shape[dim] b = self[ *([true]*dim + [0..len/2,false]) ] * 2 b[*([true]*dim + [0,false])] = b[*([true]*dim + [0,false])] / 2 if (self.shape[dim] % 2) == 0 # --> even number b[*([true]*dim + [-1,false])] = b[*([true]*dim + [-1,false])] / 2 end b end def rawspect2powerspect(*dims) # developpers memo: Needs Units conversion. factor = nil dims.each{|dim| ax = self.coord(dim) dwn = UNumeric.new( ((ax[-1].val - ax[0].val)/(ax.length - 1)).abs, ax.units ) if !factor factor = dwn**(-1) else factor = factor / dwn end } self * factor end def phase_velocity_filter(xdim, tdim, cmin=nil, cmax=nil, xconv=nil, tconv=nil, remove_xtmean=false) raise(ArgumentError,"need at least cmin or cmax") if !(cmin || cmax) xdim = dim_index(xdim) if xdim.is_a?(String) xdim += rank if xdim < 0 tdim = dim_index(tdim) if tdim.is_a?(String) tdim += rank if tdim < 0 fc = self.fft(nil,xdim,tdim) kdim = xdim fdim = tdim kconv = ( xconv ? 1.0/xconv : nil ) fconv = ( tconv ? 1.0/tconv : nil ) cp, = fc.phase_velocity(kdim,fdim,kconv,fconv,!remove_xtmean,true) fcv = fc.val nk = fc.shape[kdim] nf = fc.shape[fdim] sel = [true]*fc.rank for jf in 0...nf for jk in 0...nk c = cp[jk,jf] if ( cmin && ccmax) sel[kdim]=jk sel[fdim]=jf fcv[*sel] = 0.0 end end end fc.replace_val(fcv) gp = fc.fft(true,xdim,tdim) gp = gp.real if (self.typecode <= NArray::FLOAT) GPhys.new(self.grid_copy, gp.data) #^ use the original grid, since units may have changed end def phase_velocity_binning_iso_norml(kdim, fdim, cmin, cmax, cint, kconv=nil, fconv=nil) cbins = {"min"=>cmin,"max"=>cmax,"int"=>cint} pwc = phase_velocity_binning(kdim, fdim, cbins, kconv, fconv) fact = UNumeric[int, pwc.coord(0).units] pwc/fact end def phase_velocity_binning(kdim, fdim, cbins, kconv=nil, fconv=nil) # < process arguments > case cbins when Hash min = cbins["min"] ||raise(ArgumentError,"a Hash cbins must have 'min'") max = cbins["max"] ||raise(ArgumentError,"a Hash cbins must have 'max'") int = cbins["int"] ||raise(ArgumentError,"a Hash cbins must have 'int'") cbins = Array.new eps = int.abs*1e-6 # epsilon to deal with float steps (min.to_f..(max.to_f+eps)).step(int){|c| cbins.push(c)} cbins = NArray.to_na(cbins) when Array cbins = NArray.to_na(cbins) when NArray else raise ArgumentError, "cbins must be a Hash or Array or NArray" end kdim = dim_index(kdim) if kdim.is_a?(String) kdim += rank if kdim < 0 fdim = dim_index(fdim) if fdim.is_a?(String) fdim += rank if fdim < 0 # < sort along wavenumber/freuqency axis > pw = self.spect_zero_centering(kdim).spect_one_sided(fdim) # < process axes > cp, cunits = pw.phase_velocity(kdim,fdim,kconv,fconv,false) vcbins = VArray.new(cbins, {"units"=>cunits.to_s, "long_name"=>"phase velocity bounds"}, "cbounds") vccent = VArray.new( (cbins[0..-2] + cbins[1..-1])/2, {"units"=>cunits.to_s, "long_name"=>"phase velocity"}, "c") axc = Axis.new(true).set_cell(vccent, vcbins).set_pos_to_center axes = [axc] # the first dimension will be "c" gr = pw.grid (0...pw.rank).each do |d| if d!=kdim && d!=fdim axes.push(gr.axis(d)) end end newgrid = Grid.new(*axes) nk = pw.shape[kdim] nf = pw.shape[fdim] cp.reshape!(nk*nf) # < reorder input data > dimorder = (0...pw.rank).collect{|i| i} dimorder.delete(fdim) dimorder.unshift(fdim) dimorder.delete(kdim) dimorder.unshift(kdim) # --> [kdim, fdim, the other dims...] sh = pw.shape reshape = [nk*nf] (0...rank).each{|i| reshape.push(sh[i]) if i!=fdim && i!=kdim} pwv = pw.val.transpose(*dimorder).reshape(*reshape) # --> [ combined k&fdim, the other dims...] # < binning > shc = newgrid.shape pwc = NArray.new(pwv.typecode, *shc) # will have no missing data nc = axc.length for jc in 0...nc w = (cp.gt(cbins[jc]) & cp.lt(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0) if w.length>0 w = (cp.eq(cbins[jc])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry w = (cp.eq(cbins[jc+1])).where pwc[jc,false] += pwv[w,false].sum(0)/2 if w.length>0 # half from bdry end vpwc = VArray.new(pwc,pw.data,pw.name) gpwc = GPhys.new(newgrid,vpwc) gpwc end def phase_velocity(kdim,fdim,kconv,fconv,kf0_is_c0=true,no_kfreorder=false) kax = self.axis(kdim) fax = self.axis(fdim) kax.pos = kax.pos*kconv if kconv fax.pos = fax.pos*fconv if fconv cunits = fax.pos.units / kax.pos.units f = fax.pos.val k = kax.pos.val nk = k.length nf = f.length if no_kfreorder k[nk/2+1..-1] = -k[nk/2+1..-1][-1..0]+k[nk/2] f[nf/2+1..-1] = -f[nf/2+1..-1][-1..0]+f[nf/2] end f = -f cp = f.newdim(0) / k.newdim(1) #cp[kdim,fdim] jf0 = f.eq(0).where[0] # where f==0 jk0 = k.eq(0).where[0] # where k==0 if kf0_is_c0 cp[jk0,jf0] = 0.0 # treat k=f=0 as stationary (c=0) else cp[jk0,jf0] = 1.0/0.0 # not to count k=f=0 component at all (c=infty) end [cp, cunits] end end end ###################################################### ## < test > if $0 == __FILE__ require "numru/ggraph" include NumRu include NMath # < make a GPhys from scratch > vx = VArray.new( NArray.float(11).indgen! * (2*Math::PI/11) ).rename("x") vx.units = 'km' vy = VArray.new( NArray.float(8).indgen! * (2*Math::PI/8) ).rename("y") vy.units = 'km' xax = Axis.new().set_pos(vx) #yax = Axis.new(true).set_cell_guess_bounds(vy).set_pos_to_center yax = Axis.new().set_pos(vy) grid = Grid.new(xax, yax) a = NArray.float(vx.length, vy.length) a[] = sin(vx.val.newdim(1)) * cos(vy.val.newdim(0)) v = VArray.new( a ) v.units = 'm/s' gpz = GPhys.new(grid,v) print "Original:\n" p gpz.val fc = gpz.fft print "2D FFT & abs:\n" p fc.val.abs, fc.units.to_s, fc.coord(0).units.to_s print "Check the invertivility: ", (fc.fft(true) - gpz).abs.max, ' / ', gpz.abs.max, "\n" sp = fc.abs**2 print "Check parsevals relation: ", sp.sum, ' / ', (gpz**2).mean, "\n" spex = sp.spect_zero_centering(0) spex2 = spex.spect_one_sided(1) print " sidedness changed --> ",spex.sum,", ",spex2.sum,"\n" if defined?(FFTW3) fc = gpz.fft(nil, 0) print "1D FFT & abs:\n" p fc.val.abs print "Check the invertivility: ", (fc.fft(true, 0) - gpz).abs.max, ' / ', gpz.abs.max, "\n" sp = fc.abs**2 print "Check parsevals relation: ", sp.sum(0).mean, ' / ', (gpz**2).mean, "\n" end print "\n** Check detrend **\n" print "when NArray...\n" EPS = 5e-14 a.indgen! v = VArray.new( a ) gp = GPhys.new(grid,v) gpdt = gp.detrend(0) if gpdt.val.max "m","long_name"=>"dummy"},"d") dax = Axis.new().set_pos(vd) vy.units = 'hour' vy.name = 't' xx = vx.val.newdim(1) yy = vy.val.newdim(0) a = sin(xx) * cos(yy) + 0.5*sin(xx*1.2+yy*0.6) #a = 0.5*sin(xx*1.2+yy*0.7) #a = sin(xx) * cos(yy) + 0.2*sin(xx+yy) b = NArray.float(a.shape[0], 2, a.shape[1]) b[true,0,true] = a + 1 b[true,1,true] = a v = VArray.new( b, {"units"=>"K", "long_name"=>"vv"}, "v" ) grid = Grid.new(xax, dax, yax) gp = GPhys.new(grid, v) fc = gp.fft(nil, 0, 2) sp = fc.abs**2 fconv = UNumeric[1/3.6e3,"hour/s"] kconv = UNumeric[1e-3,"km/m"] csp = fc.phase_velocity_binning(0, 2, {"min"=>-2,"max"=>2,"int"=>0.25}, kconv, fconv) p csp #cspn = sp.phase_velocity_binning_iso_norml(0, 2, -2, 2, 0.25, kconv, fconv) DCL.gropn(1) DCL.sldiv('y',2,2) GGraph::tone gp[true,0,true],true,"color_bar"=>true GGraph::line csp[true,0].real,true, "max"=>0.6,"min"=>-0.6 GGraph::line csp[true,0].imag,false, "type"=>2 #GGraph::line cspn[true,0] gpf = gp.phase_velocity_filter(0, 2, -2.0, 0.0, 1/kconv, 1/fconv) GGraph::tone gpf[true,0,true],true,"color_bar"=>true gpf = gp.phase_velocity_filter(0, 2, -0.3, -0.01, 1/kconv, 1/fconv) GGraph::tone gpf[true,0,true],true,"color_bar"=>true ### grid = Grid.new(xax, yax) a = NArray.float(vx.length, vy.length) a[] = sin(2*vx.val.newdim(1)) * cos(vy.val.newdim(0)) v = VArray.new( a ) v.units = 'm/s' gpz = GPhys.new(grid,v) dim = 0 x = gpz.coord(dim) gp_x = gpz.fft_deriv(dim) p gp_x dim = 1 gp_y = gpz.fft_deriv(dim) p gp_y GGraph::tone gpz,true,"color_bar"=>true GGraph::tone gp_x,true,"color_bar"=>true GGraph::tone gp_y,true,"color_bar"=>true DCL.grcls end