#include "ruby_vips.h" /* * call-seq: * im.measure_area(left, top, width, height, h, v, sel) -> array * * Analyse a grid of colour patches, producing an array of averages. * Pass a box defined by left, top, width, and * height, the number of horizontal and vertical patches h and * v, an array giving the numbers of the patches to measure sel * (patches are numbered left-to-right, top-to-bottom, starting with 1). Return * an array in which rows are patches and columns are bands. Only the central * 50% of each patch is averaged. */ VALUE img_measure_area(VALUE obj, VALUE left, VALUE top, VALUE width, VALUE height, VALUE h, VALUE v, VALUE sel) { DOUBLEMASK *ret; int *a, i, len = RARRAY_LENINT(sel); GetImg(obj, data, im); a = ALLOC_N(int, len); for (i = 0; i < len; i++) a[i] = NUM2INT(RARRAY_PTR(sel)[i]); ret = im_measure_area(im, NUM2INT(left), NUM2INT(top), NUM2INT(width), NUM2INT(height), NUM2INT(h), NUM2INT(v), a, len, "img_measure_area"); xfree(a); return dmask2rb(ret); } /* * call-seq: * im.stats -> array * * Find many image statistics in a single pass through the pixels. Returns an * array of 6 columns by n+1 (where n is number of bands in the image) rows. * Columns are statistics, and are, in order: minimum, maximum, sum, sum of * squares, mean, standard deviation. Row 0 has statistics for all bands * together, row 1 has stats for band 1, and so on. */ VALUE img_stats(VALUE obj) { DOUBLEMASK *ret; GetImg(obj, data, im); if (!(ret = im_stats(im))) vips_lib_error(); return dmask2rb(ret); } /* * call-seq: * im.max -> number * * Finds the the maximum value of *self*. If input is complex, the max modulus * is returned. Finds the maximum of all bands: if you want to find the maximum * of each band separately, use Image#stats. */ VALUE img_max(VALUE obj) { double out; GetImg(obj, data, im); if (im_max(im, &out)) vips_lib_error(); return DBL2NUM(out); } /* * call-seq: * im.min -> number * * Finds the the minimum value of the image. If input is complex, the min * modulus is returned. Finds the minimum of all bands: if you want to find the * minimum of each band separately, use Image#stats. */ VALUE img_min(VALUE obj) { double out; GetImg(obj, data, im); if (im_min(im, &out)) vips_lib_error(); return DBL2NUM(out); } /* * call-seq: * im.avg -> number * * Finds the average of an image. Works on any non-complex image format. */ VALUE img_avg(VALUE obj) { double out; GetImg(obj, data, im); if (im_avg(im, &out)) vips_lib_error(); return DBL2NUM(out); } /* * call-seq: * im.deviate -> number * * This operation finds the standard deviation of all pixels in the image. It * operates on all bands of the input image: use Image#stats if you need to * calculate an average for each band. * * Non-complex images only. */ VALUE img_deviate(VALUE obj) { double out; GetImg(obj, data, im); if (im_deviate(im, &out)) vips_lib_error(); return DBL2NUM(out); } /* * call-seq: * im.maxpos_avg -> [ x, y, value ] * * Function to find the maximum of an image. In the event of a draw, returns * average of all drawing coords. */ VALUE img_maxpos_avg(VALUE obj) { double x, y, out; GetImg(obj, data, im); if (im_maxpos_avg(im, &x, &y, &out)) vips_lib_error(); return rb_ary_new3(3, DBL2NUM(x), DBL2NUM(y), DBL2NUM(out)); } static VALUE img_maxpos_single(VALUE obj) { double out; int x, y; GetImg(obj, data, im); if (im_maxpos(im, &x, &y, &out)) vips_lib_error(); return rb_ary_new3(3, INT2NUM(x), INT2NUM(y), DBL2NUM(out)); } static VALUE img_maxpos_n(VALUE obj, int len) { double *out; int im_return, i, *x, *y; VALUE t, ary; GetImg(obj, data, im); ary = rb_ary_new2(len); x = ALLOC_N(int, len); y = ALLOC_N(int, len); out = ALLOC_N(double, len); if (!(im_return = im_maxpos_vec(im, x, y, out, len))) { for (i = 0; i < len; i++) { t = rb_ary_new3(3, INT2NUM(x[i]), INT2NUM(y[i]), DBL2NUM(out[i])); rb_ary_push(ary, t); } } xfree(x); xfree(y); xfree(out); if(im_return) vips_lib_error(); return ary; } /* * call-seq: * im.maxpos -> x, y, value * im.maxpos(n, ...) -> [ x, y, value ], ... * * Function to find the maximum of an image. Works for any image type. Returns * an array with the x and y coordinates of the maximum value and the * corresponding value. If n is given, returns the n largest * values. For complex images, finds the pixel with the highest modulus. */ VALUE img_maxpos(int argc, VALUE *argv, VALUE obj) { VALUE v_num; rb_scan_args(argc, argv, "01", &v_num); if (NIL_P(v_num)) return img_maxpos_single(obj); else return img_maxpos_n(obj, NUM2INT(v_num)); } static VALUE img_minpos_single(VALUE obj) { double out; int x, y; GetImg(obj, data, im); if (im_minpos(im, &x, &y, &out)) vips_lib_error(); return rb_ary_new3(3, INT2NUM(x), INT2NUM(y), DBL2NUM(out)); } static VALUE img_minpos_n(VALUE obj, int len) { double *out; int im_return, i, *x, *y; VALUE t, ary; GetImg(obj, data, im); ary = rb_ary_new2(len); x = ALLOC_N(int, len); y = ALLOC_N(int, len); out = ALLOC_N(double, len); if (!(im_return = im_minpos_vec(im, x, y, out, len))) { for (i = 0; i < len; i++) { t = rb_ary_new3(3, INT2NUM(x[i]), INT2NUM(y[i]), DBL2NUM(out[i])); rb_ary_push(ary, t); } } xfree(x); xfree(y); xfree(out); if(im_return) vips_lib_error(); return ary; } /* * call-seq: * im.minpos -> x, y, value * im.minpos(n) -> [ x, y, value ], ... * * Function to find the minimum of an image. Works for any image type. Returns * an array with the x and y coordinates of the minimum value and the * corresponding value. If n is given, returns the n lowest * values. For complex images, finds the pixel with the lowest modulus. */ VALUE img_minpos(int argc, VALUE *argv, VALUE obj) { VALUE v_num; rb_scan_args(argc, argv, "01", &v_num); if (NIL_P(v_num)) return img_minpos_single(obj); else return img_minpos_n(obj, NUM2INT(v_num)); } /* * call-seq: * im.bandmean -> image * * Creates a one-band image where each pixel is the average of the bands for * that pixel in the input image. The output band format is the same as the * input band format. Integer types use round-to-nearest averaging. * */ VALUE img_bandmean(VALUE obj) { RUBY_VIPS_UNARY(im_bandmean); } /* * call-seq: * im.add(other_image) -> image * im + other_image -> image * * This operation calculates im + other_image and writes the result to * a new image. The images must be the same size. They may have any format. * * If the number of bands differs, one of the images must have one band. In * this case, an n-band image is formed from the one-band image by joining n * copies of the one-band image together, and then the two n-band images are * operated upon. * * The two input images are cast up to the smallest common type. */ VALUE img_add(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_add); } /* * call-seq: * im.subtract(other_image) -> image * im - other_image -> image * * This operation calculates im - image and writes the result to a new * image. The images must be the same size. They may have any format. * * If the number of bands differs, one of the images must have one band. In this * case, an n-band image is formed from the one-band image by joining n copies * of the one-band image together, and then the two n-band images are operated * upon. * * The two input images are cast up to the smallest common type. */ VALUE img_subtract(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_subtract); } /* * call-seq: * im.invert -> image * * This operation calculates (255 - im). The operation works on uchar images * only. The input can have any no of channels. * * See Image#exptra for a function which can process any input image type. */ VALUE img_invert(VALUE obj) { RUBY_VIPS_UNARY(im_invert); } static VALUE img_lin_mult(int argc, VALUE *argv_a, VALUE *argv_b, VALUE obj) { double *a, *b; int i; GetImg(obj, data, im); OutImg(obj, new, data_new, im_new); a = IM_ARRAY(im_new, argc, double); b = IM_ARRAY(im_new, argc, double); for (i = 0; i < argc; i++) { a[i] = NUM2DBL(argv_a[i]); b[i] = NUM2DBL(argv_b[i]); } if (im_lintra_vec(argc, a, im, b, im_new)) vips_lib_error(); return new; } /* * call-seq: * im.lin(a, b) -> image * im.lin([a1, a2, a3], [b1, b2, b3]) -> image * * Pass an image through a linear transform - ie. im * a + b. * Output is always float for integer input, double for double input, complex * for complex input and double complex for double complex input. * * If the arrays are passed in and they have the same number of elements as * there are bands in the image, then one array element is used for each band. * If the arrays have more than one element and the image only has a single * band, the result is a many-band image where each band corresponds to one * array element. */ VALUE img_lin(VALUE obj, VALUE a, VALUE b) { int len = 1; VALUE *a_v = &a; VALUE *b_v = &b; if (TYPE(a) == T_ARRAY) { len = RARRAY_LEN(a); if (len < 1 || len != RARRAY_LEN(b)) rb_raise(rb_eArgError, "argument arrays must be of equal length with at least one element"); a_v = RARRAY_PTR(a); b_v = RARRAY_PTR(b); } return img_lin_mult(len, a_v, b_v, obj); } /* * call-seq: * im.multiply(other_image) -> image * im * other_image -> image * * This operation calculates im * other_image. The images must be the * same size. They may have any format. * * If the number of bands differs, one of the images must have one band. In * this case, an n-band image is formed from the one-band image by joining n * copies of the one-band image together, and then the two n-band images are * operated upon. * * The two input images are cast up to the smallest common type. */ VALUE img_multiply(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_multiply); } static VALUE img_remainder_img(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_remainder); } static VALUE img_remainder_const(int argc, VALUE *argv, VALUE obj) { int i; double *c; GetImg(obj, data, im); OutImg(obj, new, data_new, im_new); c = IM_ARRAY(im_new, argc, double); for (i = 0; i < argc; i++) c[i] = NUM2DBL(argv[i]); if (im_remainder_vec(im, im_new, argc, c)) vips_lib_error(); return new; } /* * call-seq: * im % other_image -> image * im % c -> image * im % [c, ...] -> image * * im.remainder(other_image) -> image * im.remainder(c) -> image * im.remainder(c, ...) -> image * * The first form calculates im % other_image (remainder after * division). The images must be the same size. They may have any non-complex * format. For float formats, it calculates im - other_image * floor (im * / other_image). * * If the number of bands differs, one of the images must have one band. In * this case, an n-band image is formed from the one-band image by joining n * copies of the one-band image together, and then the two n-band images are * operated upon. * * The two input images are cast up to the smallest common type. * * The second and third form calculates im % c (remainder after division * by constant). The image may have any non-complex format. For float formats, * calculates im - c * floor (im / c). * * If the number of image bands and constants differs, then the image must have * one band or there must only one constant. Either the image is up-banded by * joining n copies of the one-band image together, or the same constant is * used for all image bands. */ VALUE img_remainder(int argc, VALUE *argv, VALUE obj) { if (argc < 1) rb_raise(rb_eArgError, "Expected at least one constant"); else if (argc == 1 && CLASS_OF(argv[0]) == cVIPSImage) return img_remainder_img(obj, argv[0]); else return img_remainder_const(argc, argv, obj); } VALUE img_remainder_binop(VALUE obj, VALUE arg) { int argc = 1; VALUE *argv = &arg; if (TYPE(arg) == T_ARRAY) { argc = RARRAY_LEN(arg); argv = RARRAY_PTR(arg); } return img_remainder(argc, argv, obj); } /* * call-seq: * im.divide(other_image) -> image * im / other_image -> image * * This operation calculates im / other_image. The images must be the * same size. They may have any format. * * If the number of bands differs, one of the images must have one band. In * this case, an n-band image is formed from the one-band image by joining n * copies of the one-band image together, and then the two n-band images are * operated upon. * * The two input images are cast up to the smallest common type. */ VALUE img_divide(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_divide); } /* * call-seq: * im.recomb(array) -> image * * This operation recombines an image's bands. Each pixel in im is treated as * an n-element vector, where n is the number of bands in im, and multipled by * the n x m matrix array to produce the m-band output image. * * The output image is always float, unless im is double, in which case it is * double too. No complex images allowed. * * It's useful for various sorts of colour space conversions. */ VALUE img_recomb(VALUE obj, VALUE recomb) { DOUBLEMASK *dmask; GetImg(obj, data, im); OutImg(obj, new, data_new, im_new); mask_arg2mask(recomb, NULL, &dmask); if (im_recomb(im, im_new, dmask)) vips_lib_error(); return new; } /* * call-seq: * im.sign -> image * * Finds the unit vector in the direction of the pixel value. For non-complex * images, it returns a signed char image with values -1, 0, and 1 for * negative, zero and positive pixels. For complex images, it returns a complex * normalised to length 1. */ VALUE img_sign(VALUE obj) { RUBY_VIPS_UNARY(im_sign); } /* * call-seq: * im.abs -> image * * This operation finds the absolute value of an image. It does a copy for * unsigned integer types, negate for negative values in signed integer types, * fabs(3) for float types, and calculate modulus for complex types. */ VALUE img_abs(VALUE obj) { RUBY_VIPS_UNARY(im_abs); } /* * call-seq: * im.floor -> image * * For each pixel, find the largest integral value not less than. Copy for * integer types. Output type == input type. */ VALUE img_floor(VALUE obj) { RUBY_VIPS_UNARY(im_floor); } /* * call-seq: * im.rint -> image * * Finds the nearest integral value. Copy for integer types. Output type == * input type. */ VALUE img_rint(VALUE obj) { RUBY_VIPS_UNARY(im_rint); } /* * call-seq: * im.ceil -> image * * For each pixel, find the smallest integral value not less than. Copy for * integer types. Output type == input type. */ VALUE img_ceil(VALUE obj) { RUBY_VIPS_UNARY(im_ceil); } /* * call-seq: * linreg(x) -> image * linreg(*args) -> image * * Function to find perform pixelwise linear regression on an array of * single band images. The output is a seven-band double image. * * x is the position of each image (pixel value is Y). */ VALUE img_s_linreg(int argc, VALUE *argv, VALUE obj) { vipsImg *in; IMAGE **ins; double *vips_xs; VALUE cur_img; int i; OutPartial(new, data_new, im_new); vips_xs = IM_ARRAY(im_new, argc, double); ins = IM_ARRAY(im_new, argc + 1, IMAGE*); ins[argc] = NULL; /* takes a NULL terminated array of IMAGE pointers */ for (i = 0; i < argc; i++) { cur_img = RARRAY_PTR(argv[i])[0]; img_add_dep(data_new, cur_img); Data_Get_Struct(cur_img, vipsImg, in); ins[i] = in->in; vips_xs[i] = NUM2DBL(RARRAY_PTR(argv[i])[1]); } if (im_linreg(ins, im_new, vips_xs)) vips_lib_error(); return new; } /* * call-seq: * im.point(interpolator_sym, x, y, band) -> number * * Find the value at (@x, @y) in given band of image. * Non-integral values are calculated using the supplied interpolator, e.g. * :bilinear. * * To get a list of available interpolators, look at * VIPS::Interpolator::INTERPOLATORS.keys */ VALUE img_point(VALUE obj, VALUE itrp_sym, VALUE x, VALUE y, VALUE band) { double out; VipsInterpolate *itrp_vips = interp_lookup(itrp_sym); GetImg(obj, data, im); if (im_point(im, itrp_vips, NUM2DBL(x), NUM2DBL(y), NUM2INT(band), &out)) vips_lib_error(); return DBL2NUM(out); } /* * call-seq: * im.pow(c, ...) -> image * * im ** c -> image * im ** [c, ...] -> image * * Tansforms each pixel value in the input image to value ** c in the * output image. It detects division by zero, setting those pixels to zero in * the output. Beware: it does this silently! * * If one constant c is given, that constant is used for each image * band. If more than one value is given, it must have the same number of * elements as there are bands in the image, and one element is used for each * band. */ VALUE img_pow(int argc, VALUE *argv, VALUE obj) { double *c; int i; if (argc < 1) rb_raise(rb_eArgError, "Expected at least one constant"); GetImg(obj, data, im); OutImg(obj, new, data_new, im_new); c = IM_ARRAY(im_new, argc, double); for (i = 0; i < argc; i++) c[i] = NUM2DBL(argv[i]); if (im_powtra_vec(im, im_new, argc, c)) vips_lib_error(); return new; } VALUE img_pow_binop(VALUE obj, VALUE arg) { int argc = 1; VALUE *argv = &arg; if (TYPE(arg) == T_ARRAY) { argc = RARRAY_LEN(arg); argv = RARRAY_PTR(arg); } return img_pow(argc, argv, obj); } /* * call-seq: * im.expn(c, ...) -> image * * Transforms each pixel value of the input image to c ** value in the * output image. It detects division by zero, setting those pixels to zero in * the output. Beware: it does this silently! * * If one constant c is given, that constant is used for each image * band. If more than one value is given, it must have the same number of * elements as there are bands in the image, and one element is used for each * band. */ VALUE img_expn(int argc, VALUE *argv, VALUE obj) { double *c; int i; GetImg(obj, data, im); OutImg(obj, new, data_new, im_new); c = IM_ARRAY(im_new, argc, double); for (i = 0; i < argc; i++) c[i] = NUM2DBL(argv[i]); if (im_expntra_vec(im, im_new, argc, c)) vips_lib_error(); return new; } /* * call-seq: * im.log -> image * * For each pixel, calculate the natural logarithm. The output type is float, * unless the input is double, in which case the output is double. Non-complex * images only. */ VALUE img_log(VALUE obj) { RUBY_VIPS_UNARY(im_logtra); } /* * call-seq: * im.log10 -> image * * For each pixel, calculate the base 10 logarithm. The output type is float, * unless the input is double, in which case the output is double. Non-complex * images only. */ VALUE img_log10(VALUE obj) { RUBY_VIPS_UNARY(im_log10tra); } /* * call-seq: * im.sin -> image * * For each pixel, calculate the sine. Angles are expressed in degrees. The * output type is float, unless the input is double, in which case the output * is double. Non-complex images only. */ VALUE img_sin(VALUE obj) { RUBY_VIPS_UNARY(im_sintra); } /* * call-seq: * im.cos -> image * * For each pixel, calculate the cosine. Angles are expressed in degrees. The * output type is float, unless the input is double, in which case the output * is double. Non-complex images only. */ VALUE img_cos(VALUE obj) { RUBY_VIPS_UNARY(im_costra); } /* * call-seq: * im.tan -> image * * For each pixel, calculate the tangent. Angles are expressed in degrees. The * output type is float, unless the input is double, in which case the output * is double. Non-complex images only. */ VALUE img_tan(VALUE obj) { RUBY_VIPS_UNARY(im_tantra); } /* * call-seq: * im.asin -> image * * For each pixel, calculate the arc or inverse sine. Angles are expressed in * degrees. The output type is float, unless the input is double, in which case * the output is double. Non-complex images only. */ VALUE img_asin(VALUE obj) { RUBY_VIPS_UNARY(im_asintra); } /* * call-seq: * im.acos -> image * * For each pixel, calculate the arc or inverse cosine. Angles are expressed in * degrees. The output type is float, unless the input is double, in which case * the output is double. Non-complex images only. */ VALUE img_acos(VALUE obj) { RUBY_VIPS_UNARY(im_acostra); } /* * call-seq: * im.atan -> image * * For each pixel, calculate the arc or inverse tangent. Angles are expressed * in degrees. The output type is float, unless the input is double, in which * case the output is double. Non-complex images only. */ VALUE img_atan(VALUE obj) { RUBY_VIPS_UNARY(im_atantra); } /* * call-seq: * im.cross_phase(other_image) -> image * * Find the phase of the cross power spectrum of two complex images, expressed * as a complex image where the modulus of each pixel is one. */ VALUE img_cross_phase(VALUE obj, VALUE obj2) { RUBY_VIPS_BINARY(im_cross_phase); }