# frozen_string_literal: true require 'rumale/base/estimator' require 'rumale/base/transformer' require 'rumale/utils' require 'rumale/validation' module Rumale module KernelApproximation # Class for RBF kernel feature mapping. # # @example # require 'rumale/kernel_approximation/rbf' # # transformer = Rumale::KernelApproximation::RBF.new(gamma: 1.0, n_components: 128, random_seed: 1) # new_training_samples = transformer.fit_transform(training_samples) # new_testing_samples = transformer.transform(testing_samples) # # *Refernce*: # - Rahimi, A., and Recht, B., "Random Features for Large-Scale Kernel Machines," Proc. NIPS'07, pp.1177--1184, 2007. class RBF < ::Rumale::Base::Estimator include ::Rumale::Base::Transformer # Return the random matrix for transformation. # @return [Numo::DFloat] (shape: [n_features, n_components]) attr_reader :random_mat # Return the random vector for transformation. # @return [Numo::DFloat] (shape: [n_components]) attr_reader :random_vec # Return the random generator for transformation. # @return [Random] attr_reader :rng # Create a new transformer for mapping to RBF kernel feature space. # # @param gamma [Float] The parameter of RBF kernel: exp(-gamma * x^2). # @param n_components [Integer] The number of dimensions of the RBF kernel feature space. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(gamma: 1.0, n_components: 128, random_seed: nil) super() @params = { gamma: gamma, n_components: n_components, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @overload fit(x) -> RBF # @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # This method uses only the number of features of the data. # @return [RBF] The learned transformer itself. def fit(x, _y = nil) x = ::Rumale::Validation.check_convert_sample_array(x) n_features = x.shape[1] sub_rng = @rng.dup @params[:n_components] = 2 * n_features if @params[:n_components] <= 0 @random_mat = ::Rumale::Utils.rand_normal([n_features, @params[:n_components]], sub_rng) * (2.0 * @params[:gamma])**0.5 n_half_components = @params[:n_components] / 2 @random_vec = Numo::DFloat.zeros(@params[:n_components] - n_half_components).concatenate( Numo::DFloat.ones(n_half_components) * (0.5 * Math::PI) ) self end # Fit the model with training data, and then transform them with the learned model. # # @overload fit_transform(x) -> Numo::DFloat # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data def fit_transform(x, _y = nil) x = ::Rumale::Validation.check_convert_sample_array(x) fit(x).transform(x) end # Transform the given data with the learned model. # # @overload transform(x) -> Numo::DFloat # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model. # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data. def transform(x) x = ::Rumale::Validation.check_convert_sample_array(x) n_samples, = x.shape projection = x.dot(@random_mat) + @random_vec.tile(n_samples, 1) Numo::NMath.sin(projection) * ((2.0 / @params[:n_components])**0.5) end end end end