# frozen_string_literal: true require 'lbfgsb' require 'rumale/base/estimator' require 'rumale/base/regressor' require 'rumale/validation' require_relative 'base_estimator' module Rumale module LinearModel # LinearRegression is a class that implements ordinary least square linear regression # with singular value decomposition (SVD) or L-BFGS optimization. # # @example # require 'rumale/linear_model/linear_regression' # # estimator = Rumale::LinearModel::LinearRegression.new # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # # If Numo::Linalg is installed, you can specify 'svd' for the solver option. # require 'numo/linalg/autoloader' # require 'rumale/linear_model/linear_regression' # # estimator = Rumale::LinearModel::LinearRegression.new(solver: 'svd') # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) class LinearRegression < Rumale::LinearModel::BaseEstimator include Rumale::Base::Regressor # Create a new ordinary least square linear regressor. # # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # If solver is 'svd', this parameter is ignored. # @param tol [Float] The tolerance of loss for terminating optimization. # If solver is 'svd', this parameter is ignored. # @param solver [String] The algorithm to calculate weights. ('auto', 'svd' or 'lbfgs'). # 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'lbfgs' solver. # 'svd' performs singular value decomposition of samples. # 'lbfgs' uses the L-BFGS method for optimization. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # If solver is 'svd', this parameter is ignored. def initialize(fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, solver: 'auto', verbose: false) super() @params = { fit_bias: fit_bias, bias_scale: bias_scale, max_iter: max_iter, tol: tol, verbose: verbose } @params[:solver] = if solver == 'auto' enable_linalg?(warning: false) ? 'svd' : 'lbfgs' else solver.match?(/^svd$|^lbfgs$/) ? solver : 'lbfgs' end end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [LinearRegression] The learned regressor itself. def fit(x, y) x = Rumale::Validation.check_convert_sample_array(x) y = Rumale::Validation.check_convert_target_value_array(y) Rumale::Validation.check_sample_size(x, y) @weight_vec, @bias_term = if @params[:solver] == 'svd' && enable_linalg?(warning: false) partial_fit_svd(x, y) else partial_fit_lbfgs(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end private def partial_fit_svd(x, y) x = expand_feature(x) if fit_bias? w = Numo::Linalg.pinv(x, driver: 'svd').dot(y) w = w.transpose.dup unless single_target?(y) split_weight(w) end def partial_fit_lbfgs(base_x, base_y) fnc = proc do |w, x, y| n_samples, n_features = x.shape w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil? z = x.dot(w.transpose) d = z - y loss = (d**2).sum.fdiv(n_samples) gradient = 2.fdiv(n_samples) * d.transpose.dot(x) [loss, gradient.flatten.dup] end base_x = expand_feature(base_x) if fit_bias? n_features = base_x.shape[1] n_outputs = single_target?(base_y) ? 1 : base_y.shape[1] w_init = Numo::DFloat.zeros(n_outputs * n_features) res = Lbfgsb.minimize( fnc: fnc, jcb: true, x_init: w_init, args: [base_x, base_y], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) w = single_target?(base_y) ? res[:x] : res[:x].reshape(n_outputs, n_features) split_weight(w) end def single_target?(y) y.ndim == 1 end end end end