Sha256: 7b23933d0701e0b071f546a749862421fb42611462c0867d956e18abd84dc84e
Contents?: true
Size: 1.08 KB
Versions: 1
Compression:
Stored size: 1.08 KB
Contents
module Ebooks module Generator def self.generate_twitter_corpus(tweets_csv_path = 'tweets.csv', corpus_path = 'markov_dict.txt') # Go to Twitter.com -> Settings -> Download Archive. # This tweets.csv file is in the top directory. Put it in the same directory as this script. csv_text = CSV.parse(File.read(tweets_csv_path)) # Create a new clean file of text that acts as the seed for your Markov chains File.open(corpus_path, 'w') do |file| csv_text.reverse.each do |row| # Strip links and new lines tweet_text = row[5].gsub(/(?:f|ht)tps?:\/[^\s]+/, '').gsub(/\n/,' ') # Save the text file.write("#{tweet_text}\n") end end end def self.generate_sentence(corpus_path = 'markov_dict.txt') # Run when you want to generate a new Markov tweet markov = MarkyMarkov::Dictionary.new('dictionary') # Saves/opens dictionary.mmd markov.parse_file(corpus_path) tweet_text = markov.generate_n_sentences(2).split(/\#\</).first.chomp.chop markov.save_dictionary! end end end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
ebooks-0.0.1 | lib/ebooks/generator.rb |