# frozen_string_literal: true require 'svmkit/base/evaluator' require 'svmkit/evaluation_measure/precision_recall' module SVMKit # This module consists of the classes for model evaluation. module EvaluationMeasure # Precision is a class that calculates the preicision of the predicted labels. # # @example # evaluator = SVMKit::EvaluationMeasure::Precision.new # puts evaluator.score(ground_truth, predicted) class Precision include Base::Evaluator include EvaluationMeasure::PrecisionRecall # Return the average type for calculation of precision. # @return [String] ('binary', 'micro', 'macro') attr_reader :average # Create a new evaluation measure calculater for precision score. # # @param average [String] The average type ('binary', 'micro', 'macro') def initialize(average: 'binary') SVMKit::Validation.check_params_string(average: average) @average = average end # Claculate average precision. # # @param y_true [Numo::Int32] (shape: [n_samples]) Ground truth labels. # @param y_pred [Numo::Int32] (shape: [n_samples]) Predicted labels. # @return [Float] Average precision def score(y_true, y_pred) SVMKit::Validation.check_label_array(y_true) SVMKit::Validation.check_label_array(y_pred) case @average when 'binary' precision_each_class(y_true, y_pred).last when 'micro' micro_average_precision(y_true, y_pred) when 'macro' macro_average_precision(y_true, y_pred) end end end end end