# frozen_string_literal: true require 'svmkit/validation' require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel # LogisticRegression is a class that implements Logistic Regression # with stochastic gradient descent (SGD) optimization. # For multiclass classification problem, it uses one-vs-the-rest strategy. # # @example # estimator = # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. class LogisticRegression include Base::BaseEstimator include Base::Classifier # Return the weight vector for Logistic Regression. # @return [Numo::DFloat] (shape: [n_classes, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for Logistic Regression. # @return [Numo::DFloat] (shape: [n_classes]) attr_reader :bias_term # Return the class labels. # @return [Numo::Int32] (shape: [n_classes]) attr_reader :classes # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new classifier with Logisitc Regression by the SGD optimization. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @classes = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = binary_fit(x, bin_y) end self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) SVMKit::Validation.check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) SVMKit::Validation.check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) SVMKit::Validation.check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end # Dump marshal data. # @return [Hash] The marshal data about LogisticRegression. def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end private def binary_fit(x, bin_y) # Expand feature vectors for bias term. samples = @params[:fit_bias] ? expand_feature(x) : x # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. df = samples[subset_ids, true].dot(weight_vec.transpose) coef = bin_y[subset_ids] / (Numo::NMath.exp(-bin_y[subset_ids] * df) + 1.0) - bin_y[subset_ids] mean_vec = samples[subset_ids, true].transpose.dot(coef) / @params[:batch_size] weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec + mean_vec) # scale the weight vector. normalize_weight_vec(weight_vec) if @params[:normalize] end split_weight_vec_bias(weight_vec) end def expand_feature(x) Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) end def learning_rate(iter) 1.0 / (@params[:reg_param] * (iter + 1)) end def normalize_weight_vec(weight_vec) norm = Math.sqrt(weight_vec.dot(weight_vec)) weight_vec * [1.0, (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)].min end def split_weight_vec_bias(weight_vec) weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec bias = @params[:fit_bias] ? weight_vec[-1] : 0.0 [weights, bias] end end end end