// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_ASSEMBLER_X64_INL_H_ #define V8_X64_ASSEMBLER_X64_INL_H_ #include "cpu.h" #include "memory.h" namespace v8 { namespace internal { Condition NegateCondition(Condition cc) { return static_cast(cc ^ 1); } // ----------------------------------------------------------------------------- // Implementation of Assembler void Assembler::emitl(uint32_t x) { Memory::uint32_at(pc_) = x; pc_ += sizeof(uint32_t); } void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) { Memory::uint64_at(pc_) = x; if (rmode != RelocInfo::NONE) { RecordRelocInfo(rmode, x); } pc_ += sizeof(uint64_t); } void Assembler::emitw(uint16_t x) { Memory::uint16_at(pc_) = x; pc_ += sizeof(uint16_t); } void Assembler::emit_code_target(Handle target, RelocInfo::Mode rmode) { ASSERT(RelocInfo::IsCodeTarget(rmode)); RecordRelocInfo(rmode); int current = code_targets_.length(); if (current > 0 && code_targets_.last().is_identical_to(target)) { // Optimization if we keep jumping to the same code target. emitl(current - 1); } else { code_targets_.Add(target); emitl(current); } } void Assembler::emit_rex_64(Register reg, Register rm_reg) { emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(Register reg, const Operand& op) { emit(0x48 | reg.high_bit() << 2 | op.rex_); } void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) { emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_); } void Assembler::emit_rex_64(Register rm_reg) { ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code()); emit(0x48 | rm_reg.high_bit()); } void Assembler::emit_rex_64(const Operand& op) { emit(0x48 | op.rex_); } void Assembler::emit_rex_32(Register reg, Register rm_reg) { emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_32(Register reg, const Operand& op) { emit(0x40 | reg.high_bit() << 2 | op.rex_); } void Assembler::emit_rex_32(Register rm_reg) { emit(0x40 | rm_reg.high_bit()); } void Assembler::emit_rex_32(const Operand& op) { emit(0x40 | op.rex_); } void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) { byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit(); if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register reg, const Operand& op) { byte rex_bits = reg.high_bit() << 2 | op.rex_; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) { byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register rm_reg) { if (rm_reg.high_bit()) emit(0x41); } void Assembler::emit_optional_rex_32(const Operand& op) { if (op.rex_ != 0) emit(0x40 | op.rex_); } Address Assembler::target_address_at(Address pc) { return Memory::int32_at(pc) + pc + 4; } void Assembler::set_target_address_at(Address pc, Address target) { Memory::int32_at(pc) = static_cast(target - pc - 4); CPU::FlushICache(pc, sizeof(int32_t)); } Handle Assembler::code_target_object_handle_at(Address pc) { return code_targets_[Memory::int32_at(pc)]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // The modes possibly affected by apply must be in kApplyMask. void RelocInfo::apply(intptr_t delta) { if (IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. Memory::Address_at(pc_) += static_cast(delta); } else if (IsCodeTarget(rmode_)) { Memory::int32_at(pc_) -= static_cast(delta); } else if (rmode_ == JS_RETURN && IsPatchedReturnSequence()) { // Special handling of js_return when a break point is set (call // instruction has been inserted). Memory::int32_at(pc_ + 1) -= static_cast(delta); // relocate entry } } Address RelocInfo::target_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); if (IsCodeTarget(rmode_)) { return Assembler::target_address_at(pc_); } else { return Memory::Address_at(pc_); } } Address RelocInfo::target_address_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return reinterpret_cast
(pc_); } void RelocInfo::set_target_address(Address target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); if (IsCodeTarget(rmode_)) { Assembler::set_target_address_at(pc_, target); } else { Memory::Address_at(pc_) = target; } } Object* RelocInfo::target_object() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Memory::Object_at(pc_); } Handle RelocInfo::target_object_handle(Assembler *origin) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); if (rmode_ == EMBEDDED_OBJECT) { return Memory::Object_Handle_at(pc_); } else { return origin->code_target_object_handle_at(pc_); } } Object** RelocInfo::target_object_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast(pc_); } Address* RelocInfo::target_reference_address() { ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE); return reinterpret_cast(pc_); } void RelocInfo::set_target_object(Object* target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); *reinterpret_cast(pc_) = target; } bool RelocInfo::IsPatchedReturnSequence() { // The recognized call sequence is: // movq(kScratchRegister, immediate64); call(kScratchRegister); // It only needs to be distinguished from a return sequence // movq(rsp, rbp); pop(rbp); ret(n); int3 *6 // The 11th byte is int3 (0xCC) in the return sequence and // REX.WB (0x48+register bit) for the call sequence. #ifdef ENABLE_DEBUGGER_SUPPORT return pc_[10] != 0xCC; #else return false; #endif } Address RelocInfo::call_address() { ASSERT(IsPatchedReturnSequence()); return Memory::Address_at( pc_ + Assembler::kRealPatchReturnSequenceAddressOffset); } void RelocInfo::set_call_address(Address target) { ASSERT(IsPatchedReturnSequence()); Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) = target; } Object* RelocInfo::call_object() { ASSERT(IsPatchedReturnSequence()); return *call_object_address(); } void RelocInfo::set_call_object(Object* target) { ASSERT(IsPatchedReturnSequence()); *call_object_address() = target; } Object** RelocInfo::call_object_address() { ASSERT(IsPatchedReturnSequence()); return reinterpret_cast( pc_ + Assembler::kPatchReturnSequenceAddressOffset); } // ----------------------------------------------------------------------------- // Implementation of Operand void Operand::set_modrm(int mod, Register rm_reg) { ASSERT(is_uint2(mod)); buf_[0] = mod << 6 | rm_reg.low_bits(); // Set REX.B to the high bit of rm.code(). rex_ |= rm_reg.high_bit(); } void Operand::set_sib(ScaleFactor scale, Register index, Register base) { ASSERT(len_ == 1); ASSERT(is_uint2(scale)); // Use SIB with no index register only for base rsp or r12. Otherwise we // would skip the SIB byte entirely. ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12)); buf_[1] = scale << 6 | index.low_bits() << 3 | base.low_bits(); rex_ |= index.high_bit() << 1 | base.high_bit(); len_ = 2; } void Operand::set_disp8(int disp) { ASSERT(is_int8(disp)); ASSERT(len_ == 1 || len_ == 2); int8_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int8_t); } void Operand::set_disp32(int disp) { ASSERT(len_ == 1 || len_ == 2); int32_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int32_t); } } } // namespace v8::internal #endif // V8_X64_ASSEMBLER_X64_INL_H_