require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel # PegasosSVC is a class that implements Support Vector Classifier with the Pegasos algorithm. # # @example # estimator = # SVMKit::LinearModel::PegasosSVC.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. class PegasosSVC include Base::BaseEstimator include Base::Classifier # @!visibility private DEFAULT_PARAMS = { reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil }.freeze # Return the weight vector for SVC. # @return [NMatrix] (shape: [1, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for SVC. # @return [Float] attr_reader :bias_term # Return the random generator for performing random sampling in the Pegasos algorithm. # @return [Random] attr_reader :rng # Create a new classifier with Support Vector Machine by the Pegasos algorithm. # # @overload new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> PegasosSVC # # @param params [Hash] The parameters for SVC. # @option params [Float] :reg_param (1.0) The regularization parameter. # @option params [Boolean] :fit_bias (false) The flag indicating whether to fit the bias term. # @option params [Float] :bias_scale (1.0) The scale of the bias term. # @option params [Integer] :max_iter (100) The maximum number of iterations. # @option params [Integer] :batch_size (50) The size of the mini batches. # @option params [Integer] :random_seed (nil) The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(self.params[:random_seed]) end # Fit the model with given training data. # # @param x [NMatrix] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [NMatrix] (shape: [1, n_samples]) The labels to be used for fitting the model. # @return [PegasosSVC] The learned classifier itself. def fit(x, y) # Generate binary labels negative_label = y.uniq.sort.shift bin_y = y.to_flat_a.map { |l| l != negative_label ? 1 : -1 } # Expand feature vectors for bias term. samples = x samples = samples.hconcat(NMatrix.ones([x.shape[0], 1]) * params[:bias_scale]) if params[:fit_bias] # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) weight_vec = NMatrix.zeros([1, n_features]) # Start optimization. params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(params[:batch_size]) rand_ids.concat(subset_ids) target_ids = subset_ids.map do |n| n if weight_vec.dot(samples.row(n).transpose) * bin_y[n] < 1 end n_subsamples = target_ids.size next if n_subsamples.zero? # update the weight vector. eta = 1.0 / (params[:reg_param] * (t + 1)) mean_vec = NMatrix.zeros([1, n_features]) target_ids.each { |n| mean_vec += samples.row(n) * bin_y[n] } mean_vec *= eta / n_subsamples weight_vec = weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec # scale the weight vector. scaler = (1.0 / params[:reg_param]**0.5) / weight_vec.norm2 weight_vec *= [1.0, scaler].min end # Store the learned model. if params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 end self end # Calculate confidence scores for samples. # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [NMatrix] (shape: [1, n_samples]) Confidence score per sample. def decision_function(x) @weight_vec.dot(x.transpose) + @bias_term end # Predict class labels for samples. # # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [NMatrix] (shape: [1, n_samples]) Predicted class label per sample. def predict(x) decision_function(x).map { |v| v >= 0 ? 1 : -1 } end # Claculate the mean accuracy of the given testing data. # # @param x [NMatrix] (shape: [n_samples, n_features]) Testing data. # @param y [NMatrix] (shape: [1, n_samples]) True labels for testing data. # @return [Float] Mean accuracy def score(x, y) p = predict(x) n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) n_hits / y.size.to_f end # Dump marshal data. # @return [Hash] The marshal data about PegasosSVC. def marshal_dump { params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) self.params = obj[:params] @weight_vec = Utils.restore_nmatrix(obj[:weight_vec]) @bias_term = obj[:bias_term] @rng = obj[:rng] nil end end end end