#ifndef RUBY_DARRAY_H #define RUBY_DARRAY_H #include #include #include // Type for a dynamic array. Use to declare a dynamic array. // It is a pointer so it fits in st_table nicely. Designed // to be fairly type-safe. // // NULL is a valid empty dynamic array. // // Example: // rb_darray(char) char_array = NULL; // rb_darray_append(&char_array, 'e'); // printf("pushed %c\n", *rb_darray_ref(char_array, 0)); // rb_darray_free(char_array); // #define rb_darray(T) struct { rb_darray_meta_t meta; T data[]; } * // Copy an element out of the array. Warning: not bounds checked. // // T rb_darray_get(rb_darray(T) ary, size_t idx); // #define rb_darray_get(ary, idx) ((ary)->data[(idx)]) // Assign to an element. Warning: not bounds checked. // // void rb_darray_set(rb_darray(T) ary, size_t idx, T element); // #define rb_darray_set(ary, idx, element) ((ary)->data[(idx)] = (element)) // Get a pointer to an element. Warning: not bounds checked. // // T *rb_darray_ref(rb_darray(T) ary, size_t idx); // #define rb_darray_ref(ary, idx) (&((ary)->data[(idx)])) /* Copy a new element into the array. ptr_to_ary is evaluated multiple times. * * void rb_darray_append(rb_darray(T) *ptr_to_ary, T element); */ #define rb_darray_append(ptr_to_ary, element) do { \ rb_darray_ensure_space((ptr_to_ary), \ sizeof(**(ptr_to_ary)), \ sizeof((*(ptr_to_ary))->data[0])); \ rb_darray_set(*(ptr_to_ary), \ (*(ptr_to_ary))->meta.size, \ (element)); \ (*(ptr_to_ary))->meta.size++; \ } while (0) #define rb_darray_insert(ptr_to_ary, idx, element) do { \ rb_darray_ensure_space((ptr_to_ary), \ sizeof(**(ptr_to_ary)), \ sizeof((*(ptr_to_ary))->data[0])); \ MEMMOVE( \ rb_darray_ref(*(ptr_to_ary), idx + 1), \ rb_darray_ref(*(ptr_to_ary), idx), \ (*(ptr_to_ary))->data[0], \ rb_darray_size(*(ptr_to_ary)) - idx); \ rb_darray_set(*(ptr_to_ary), idx, element); \ (*(ptr_to_ary))->meta.size++; \ } while (0) // Iterate over items of the array in a for loop // #define rb_darray_foreach(ary, idx_name, elem_ptr_var) \ for (size_t idx_name = 0; idx_name < rb_darray_size(ary) && ((elem_ptr_var) = rb_darray_ref(ary, idx_name)); ++idx_name) // Iterate over valid indices in the array in a for loop // #define rb_darray_for(ary, idx_name) \ for (size_t idx_name = 0; idx_name < rb_darray_size(ary); ++idx_name) /* Make a dynamic array of a certain size. All bytes backing the elements are set to zero. * Return 1 on success and 0 on failure. * * Note that NULL is a valid empty dynamic array. * * void rb_darray_make(rb_darray(T) *ptr_to_ary, size_t size); */ #define rb_darray_make(ptr_to_ary, size) \ rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0])) /* Resize the darray to a new capacity. The new capacity must be greater than * or equal to the size of the darray. * * void rb_darray_resize_capa(rb_darray(T) *ptr_to_ary, size_t capa); */ #define rb_darray_resize_capa(ptr_to_ary, capa) \ rb_darray_resize_capa_impl((ptr_to_ary), capa, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0])) #define rb_darray_data_ptr(ary) ((ary)->data) typedef struct rb_darray_meta { size_t size; size_t capa; } rb_darray_meta_t; /* Set the size of the array to zero without freeing the backing memory. * Allows reusing the same array. */ static inline void rb_darray_clear(void *ary) { rb_darray_meta_t *meta = ary; if (meta) { meta->size = 0; } } // Get the size of the dynamic array. // static inline size_t rb_darray_size(const void *ary) { const rb_darray_meta_t *meta = ary; return meta ? meta->size : 0; } static inline void rb_darray_pop(void *ary, size_t count) { rb_darray_meta_t *meta = ary; meta->size -= count; } // Get the capacity of the dynamic array. // static inline size_t rb_darray_capa(const void *ary) { const rb_darray_meta_t *meta = ary; return meta ? meta->capa : 0; } /* Free the dynamic array. */ static inline void rb_darray_free(void *ary) { xfree(ary); } /* Internal function. Resizes the capacity of a darray. The new capacity must * be greater than or equal to the size of the darray. */ static inline void rb_darray_resize_capa_impl(void *ptr_to_ary, size_t new_capa, size_t header_size, size_t element_size) { rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary; rb_darray_meta_t *meta = *ptr_to_ptr_to_meta; rb_darray_meta_t *new_ary = xrealloc(meta, new_capa * element_size + header_size); if (meta == NULL) { /* First allocation. Initialize size. On subsequence allocations * realloc takes care of carrying over the size. */ new_ary->size = 0; } RUBY_ASSERT(new_ary->size <= new_capa); new_ary->capa = new_capa; // We don't have access to the type of the dynamic array in function context. // Write out result with memcpy to avoid strict aliasing issue. memcpy(ptr_to_ary, &new_ary, sizeof(new_ary)); } // Internal function // Ensure there is space for one more element. // Note: header_size can be bigger than sizeof(rb_darray_meta_t) when T is __int128_t, for example. static inline void rb_darray_ensure_space(void *ptr_to_ary, size_t header_size, size_t element_size) { rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary; rb_darray_meta_t *meta = *ptr_to_ptr_to_meta; size_t current_capa = rb_darray_capa(meta); if (rb_darray_size(meta) < current_capa) return; // Double the capacity size_t new_capa = current_capa == 0 ? 1 : current_capa * 2; rb_darray_resize_capa_impl(ptr_to_ary, new_capa, header_size, element_size); } static inline void rb_darray_make_impl(void *ptr_to_ary, size_t array_size, size_t header_size, size_t element_size) { rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary; if (array_size == 0) { *ptr_to_ptr_to_meta = NULL; return; } rb_darray_meta_t *meta = xcalloc(array_size * element_size + header_size, 1); meta->size = array_size; meta->capa = array_size; // We don't have access to the type of the dynamic array in function context. // Write out result with memcpy to avoid strict aliasing issue. memcpy(ptr_to_ary, &meta, sizeof(meta)); } #endif /* RUBY_DARRAY_H */