/* Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "precompiled.hpp" #include #include #include #include "err.hpp" #include "pipe.hpp" #include "macros.hpp" #include "mtrie.hpp" zmq::mtrie_t::mtrie_t () : pipes (0), min (0), count (0), live_nodes (0) { } zmq::mtrie_t::~mtrie_t () { LIBZMQ_DELETE(pipes); if (count == 1) { zmq_assert (next.node); LIBZMQ_DELETE(next.node); } else if (count > 1) { for (unsigned short i = 0; i != count; ++i) { LIBZMQ_DELETE(next.table[i]); } free (next.table); } } bool zmq::mtrie_t::add (unsigned char *prefix_, size_t size_, pipe_t *pipe_) { return add_helper (prefix_, size_, pipe_); } bool zmq::mtrie_t::add_helper (unsigned char *prefix_, size_t size_, pipe_t *pipe_) { // We are at the node corresponding to the prefix. We are done. if (!size_) { bool result = !pipes; if (!pipes) { pipes = new (std::nothrow) pipes_t; alloc_assert (pipes); } pipes->insert (pipe_); return result; } unsigned char c = *prefix_; if (c < min || c >= min + count) { // The character is out of range of currently handled // characters. We have to extend the table. if (!count) { min = c; count = 1; next.node = NULL; } else if (count == 1) { unsigned char oldc = min; mtrie_t *oldp = next.node; count = (min < c ? c - min : min - c) + 1; next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count); alloc_assert (next.table); for (unsigned short i = 0; i != count; ++i) next.table [i] = 0; min = std::min (min, c); next.table [oldc - min] = oldp; } else if (min < c) { // The new character is above the current character range. unsigned short old_count = count; count = c - min + 1; next.table = (mtrie_t**) realloc (next.table, sizeof (mtrie_t*) * count); alloc_assert (next.table); for (unsigned short i = old_count; i != count; i++) next.table [i] = NULL; } else { // The new character is below the current character range. unsigned short old_count = count; count = (min + old_count) - c; next.table = (mtrie_t**) realloc (next.table, sizeof (mtrie_t*) * count); alloc_assert (next.table); memmove (next.table + min - c, next.table, old_count * sizeof (mtrie_t*)); for (unsigned short i = 0; i != min - c; i++) next.table [i] = NULL; min = c; } } // If next node does not exist, create one. if (count == 1) { if (!next.node) { next.node = new (std::nothrow) mtrie_t; alloc_assert (next.node); ++live_nodes; } return next.node->add_helper (prefix_ + 1, size_ - 1, pipe_); } else { if (!next.table [c - min]) { next.table [c - min] = new (std::nothrow) mtrie_t; alloc_assert (next.table [c - min]); ++live_nodes; } return next.table [c - min]->add_helper (prefix_ + 1, size_ - 1, pipe_); } } void zmq::mtrie_t::rm (pipe_t *pipe_, void (*func_) (unsigned char *data_, size_t size_, void *arg_), void *arg_, bool call_on_uniq_) { unsigned char *buff = NULL; rm_helper (pipe_, &buff, 0, 0, func_, arg_, call_on_uniq_); free (buff); } void zmq::mtrie_t::rm_helper (pipe_t *pipe_, unsigned char **buff_, size_t buffsize_, size_t maxbuffsize_, void (*func_) (unsigned char *data_, size_t size_, void *arg_), void *arg_, bool call_on_uniq_) { // Remove the subscription from this node. if (pipes && pipes->erase (pipe_)) { if (!call_on_uniq_ || pipes->empty ()) { func_ (*buff_, buffsize_, arg_); } if (pipes->empty ()) { LIBZMQ_DELETE(pipes); } } // Adjust the buffer. if (buffsize_ >= maxbuffsize_) { maxbuffsize_ = buffsize_ + 256; *buff_ = (unsigned char*) realloc (*buff_, maxbuffsize_); alloc_assert (*buff_); } // If there are no subnodes in the trie, return. if (count == 0) return; // If there's one subnode (optimisation). if (count == 1) { (*buff_) [buffsize_] = min; buffsize_++; next.node->rm_helper (pipe_, buff_, buffsize_, maxbuffsize_, func_, arg_, call_on_uniq_); // Prune the node if it was made redundant by the removal if (next.node->is_redundant ()) { LIBZMQ_DELETE(next.node); count = 0; --live_nodes; zmq_assert (live_nodes == 0); } return; } // If there are multiple subnodes. // // New min non-null character in the node table after the removal unsigned char new_min = min + count - 1; // New max non-null character in the node table after the removal unsigned char new_max = min; for (unsigned short c = 0; c != count; c++) { (*buff_) [buffsize_] = min + c; if (next.table [c]) { next.table [c]->rm_helper (pipe_, buff_, buffsize_ + 1, maxbuffsize_, func_, arg_, call_on_uniq_); // Prune redundant nodes from the mtrie if (next.table [c]->is_redundant ()) { LIBZMQ_DELETE(next.table[c]); zmq_assert (live_nodes > 0); --live_nodes; } else { // The node is not redundant, so it's a candidate for being // the new min/max node. // // We loop through the node array from left to right, so the // first non-null, non-redundant node encountered is the new // minimum index. Conversely, the last non-redundant, non-null // node encountered is the new maximum index. if (c + min < new_min) new_min = c + min; if (c + min > new_max) new_max = c + min; } } } zmq_assert (count > 1); // Free the node table if it's no longer used. if (live_nodes == 0) { free (next.table); next.table = NULL; count = 0; } // Compact the node table if possible else if (live_nodes == 1) { // If there's only one live node in the table we can // switch to using the more compact single-node // representation zmq_assert (new_min == new_max); zmq_assert (new_min >= min && new_min < min + count); mtrie_t *node = next.table [new_min - min]; zmq_assert (node); free (next.table); next.node = node; count = 1; min = new_min; } else if (new_min > min || new_max < min + count - 1) { zmq_assert (new_max - new_min + 1 > 1); mtrie_t **old_table = next.table; zmq_assert (new_min > min || new_max < min + count - 1); zmq_assert (new_min >= min); zmq_assert (new_max <= min + count - 1); zmq_assert (new_max - new_min + 1 < count); count = new_max - new_min + 1; next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count); alloc_assert (next.table); memmove (next.table, old_table + (new_min - min), sizeof (mtrie_t*) * count); free (old_table); min = new_min; } } bool zmq::mtrie_t::rm (unsigned char *prefix_, size_t size_, pipe_t *pipe_) { return rm_helper (prefix_, size_, pipe_); } bool zmq::mtrie_t::rm_helper (unsigned char *prefix_, size_t size_, pipe_t *pipe_) { if (!size_) { if (pipes) { pipes_t::size_type erased = pipes->erase (pipe_); zmq_assert (erased == 1); if (pipes->empty ()) { LIBZMQ_DELETE(pipes); } } return !pipes; } unsigned char c = *prefix_; if (!count || c < min || c >= min + count) return false; mtrie_t *next_node = count == 1 ? next.node : next.table [c - min]; if (!next_node) return false; bool ret = next_node->rm_helper (prefix_ + 1, size_ - 1, pipe_); if (next_node->is_redundant ()) { LIBZMQ_DELETE(next_node); zmq_assert (count > 0); if (count == 1) { next.node = 0; count = 0; --live_nodes; zmq_assert (live_nodes == 0); } else { next.table [c - min] = 0; zmq_assert (live_nodes > 1); --live_nodes; // Compact the table if possible if (live_nodes == 1) { // If there's only one live node in the table we can // switch to using the more compact single-node // representation unsigned short i; for (i = 0; i < count; ++i) if (next.table [i]) break; zmq_assert (i < count); min += i; count = 1; mtrie_t *oldp = next.table [i]; free (next.table); next.node = oldp; } else if (c == min) { // We can compact the table "from the left" unsigned short i; for (i = 1; i < count; ++i) if (next.table [i]) break; zmq_assert (i < count); min += i; count -= i; mtrie_t **old_table = next.table; next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count); alloc_assert (next.table); memmove (next.table, old_table + i, sizeof (mtrie_t*) * count); free (old_table); } else if (c == min + count - 1) { // We can compact the table "from the right" unsigned short i; for (i = 1; i < count; ++i) if (next.table [count - 1 - i]) break; zmq_assert (i < count); count -= i; mtrie_t **old_table = next.table; next.table = (mtrie_t**) malloc (sizeof (mtrie_t*) * count); alloc_assert (next.table); memmove (next.table, old_table, sizeof (mtrie_t*) * count); free (old_table); } } } return ret; } void zmq::mtrie_t::match (unsigned char *data_, size_t size_, void (*func_) (pipe_t *pipe_, void *arg_), void *arg_) { mtrie_t *current = this; while (true) { // Signal the pipes attached to this node. if (current->pipes) { for (pipes_t::iterator it = current->pipes->begin (); it != current->pipes->end (); ++it) func_ (*it, arg_); } // If we are at the end of the message, there's nothing more to match. if (!size_) break; // If there are no subnodes in the trie, return. if (current->count == 0) break; // If there's one subnode (optimisation). if (current->count == 1) { if (data_ [0] != current->min) break; current = current->next.node; data_++; size_--; continue; } // If there are multiple subnodes. if (data_ [0] < current->min || data_ [0] >= current->min + current->count) break; if (!current->next.table [data_ [0] - current->min]) break; current = current->next.table [data_ [0] - current->min]; data_++; size_--; } } bool zmq::mtrie_t::is_redundant () const { return !pipes && live_nodes == 0; }