module ChunkyPNG # Factory method to return a color value, based on the arguments given. # # @overload Color(r, g, b, a) # @param (see ChunkyPNG::Color.rgba) # @return [Integer] The rgba color value. # # @overload Color(r, g, b) # @param (see ChunkyPNG::Color.rgb) # @return [Integer] The rgb color value. # # @overload Color(hex_value, opacity = nil) # @param (see ChunkyPNG::Color.from_hex) # @return [Integer] The hex color value, with the opacity applied if one # was given. # # @overload Color(color_name, opacity = nil) # @param (see ChunkyPNG::Color.html_color) # @return [Integer] The hex color value, with the opacity applied if one # was given. # # @overload Color(color_value, opacity = nil) # @param [Integer, :to_i] The color value. # @return [Integer] The color value, with the opacity applied if one was # given. # # @return [Integer] The determined color value as RGBA integer. # @raise [ArgumentError] if the arguments weren't understood as a color. # @see ChunkyPNG::Color # @see ChunkyPNG::Color.parse def self.Color(*args) case args.length when 1; ChunkyPNG::Color.parse(args.first) when 2; (ChunkyPNG::Color.parse(args.first) & 0xffffff00) | args[1].to_i when 3; ChunkyPNG::Color.rgb(*args) when 4; ChunkyPNG::Color.rgba(*args) else raise ArgumentError, "Don't know how to create a color from #{args.inspect}!" end end # The Color module defines methods for handling colors. Within the ChunkyPNG # library, the concepts of pixels and colors are both used, and they are # both represented by a Integer. # # Pixels/colors are represented in RGBA components. Each of the four # components is stored with a depth of 8 bits (maximum value = 255 = # {ChunkyPNG::Color::MAX}). Together, these components are stored in a 4-byte # Integer. # # A color will always be represented using these 4 components in memory. # When the image is encoded, a more suitable representation can be used # (e.g. rgb, grayscale, palette-based), for which several conversion methods # are provided in this module. module Color extend self # @return [Integer] The maximum value of each color component. MAX = 0xff # @private # @return [Regexp] The regexp to parse 3-digit hex color values. HEX3_COLOR_REGEXP = /\A(?:#|0x)?([0-9a-f]{3})\z/i # @private # @return [Regexp] The regexp to parse 6- and 8-digit hex color values. HEX6_COLOR_REGEXP = /\A(?:#|0x)?([0-9a-f]{6})([0-9a-f]{2})?\z/i # @private # @return [Regexp] The regexp to parse named color values. HTML_COLOR_REGEXP = /^([a-z][a-z_ ]+[a-z])(?:\ ?\@\ ?(1\.0|0\.\d+))?$/i #################################################################### # CONSTRUCTING COLOR VALUES #################################################################### # Parses a color value given a numeric or string argument. # # It supports color numbers, colors in hex notation and named HTML colors. # # @param [Integer, String] The color value. # @return [Integer] The color value, with the opacity applied if one was # given. def parse(source) return source if source.kind_of?(Integer) case source.to_s when /^\d+$/; source.to_s.to_i when HEX3_COLOR_REGEXP, HEX6_COLOR_REGEXP; from_hex(source.to_s) when HTML_COLOR_REGEXP; html_color(source.to_s) else raise ArgumentError, "Don't know how to create a color from #{source.inspect}!" end end # Creates a new color using an r, g, b triple and an alpha value. # @param [Integer] r The r-component (0-255) # @param [Integer] g The g-component (0-255) # @param [Integer] b The b-component (0-255) # @param [Integer] a The opacity (0-255) # @return [Integer] The newly constructed color value. def rgba(r, g, b, a) r << 24 | g << 16 | b << 8 | a end # Creates a new color using an r, g, b triple. # @param [Integer] r The r-component (0-255) # @param [Integer] g The g-component (0-255) # @param [Integer] b The b-component (0-255) # @return [Integer] The newly constructed color value. def rgb(r, g, b) r << 24 | g << 16 | b << 8 | 0xff end # Creates a new color using a grayscale teint. # @param [Integer] teint The grayscale teint (0-255), will be used as r, g, # and b value. # @return [Integer] The newly constructed color value. def grayscale(teint) teint << 24 | teint << 16 | teint << 8 | 0xff end # Creates a new color using a grayscale teint and alpha value. # @param [Integer] teint The grayscale teint (0-255), will be used as r, g, # and b value. # @param [Integer] a The opacity (0-255) # @return [Integer] The newly constructed color value. def grayscale_alpha(teint, a) teint << 24 | teint << 16 | teint << 8 | a end #################################################################### # COLOR IMPORTING #################################################################### # Creates a color by unpacking an rgb triple from a string. # # @param [String] stream The string to load the color from. It should be # at least 3 + pos bytes long. # @param [Integer] pos The position in the string to load the triple from. # @return [Integer] The newly constructed color value. def from_rgb_stream(stream, pos = 0) rgb(*stream.unpack("@#{pos}C3")) end # Creates a color by unpacking an rgba triple from a string # # @param [String] stream The string to load the color from. It should be # at least 4 + pos bytes long. # @param [Integer] pos The position in the string to load the triple from. # @return [Integer] The newly constructed color value. def from_rgba_stream(stream, pos = 0) rgba(*stream.unpack("@#{pos}C4")) end # Creates a color by converting it from a string in hex notation. # # It supports colors with (#rrggbbaa) or without (#rrggbb) alpha channel # as well as the 3-digit short format (#rgb) for those without. # Color strings may include the prefix "0x" or "#". # # @param [String] str The color in hex notation. @return [Integer] The # converted color value. # @param [Integer] opacity The opacity value for the color. Overrides any # opacity value given in the hex value if given. # @return [Integer] The color value. # @raise [ArgumentError] if the value given is not a hex color notation. def from_hex(hex_value, opacity = nil) base_color = case hex_value when HEX3_COLOR_REGEXP $1.gsub(/([0-9a-f])/i, '\1\1').hex << 8 when HEX6_COLOR_REGEXP $1.hex << 8 else raise ArgumentError, "Not a valid hex color notation: #{hex_value.inspect}!" end opacity ||= $2 ? $2.hex : 0xff base_color | opacity end # Creates a new color from an HSV triple. # # Create a new color using an HSV (sometimes also called HSB) triple. The # words `value` and `brightness` are used interchangeably and synonymously # in descriptions of this colorspace. This implementation follows the modern # convention of 0 degrees hue indicating red. # # @param [Fixnum] hue The hue component (0-360) # @param [Fixnum] saturation The saturation component (0-1) # @param [Fixnum] value The value (brightness) component (0-1) # @param [Fixnum] alpha Defaults to opaque (255). # @return [Integer] The newly constructed color value. # @raise [ArgumentError] if the hsv triple is invalid. # @see http://en.wikipedia.org/wiki/HSL_and_HSV def from_hsv(hue, saturation, value, alpha = 255) raise ArgumentError, "Hue must be between 0 and 360" unless (0..360).include?(hue) raise ArgumentError, "Saturation must be between 0 and 1" unless (0..1).include?(saturation) raise ArgumentError, "Value/brightness must be between 0 and 1" unless (0..1).include?(value) chroma = value * saturation rgb = cylindrical_to_cubic(hue, saturation, value, chroma) rgb.map! { |component| ((component + value - chroma) * 255).to_i } rgb << alpha self.rgba(*rgb) end alias_method :from_hsb, :from_hsv # Creates a new color from an HSL triple. # # This implementation follows the modern convention of 0 degrees hue # indicating red. # # @param [Fixnum] hue The hue component (0-360) # @param [Fixnum] saturation The saturation component (0-1) # @param [Fixnum] lightness The lightness component (0-1) # @param [Fixnum] alpha Defaults to opaque (255). # @return [Integer] The newly constructed color value. # @raise [ArgumentError] if the hsl triple is invalid. # @see http://en.wikipedia.org/wiki/HSL_and_HSV def from_hsl(hue, saturation, lightness, alpha = 255) raise ArgumentError, "Hue #{hue} was not between 0 and 360" unless (0..360).include?(hue) raise ArgumentError, "Saturation #{saturation} was not between 0 and 1" unless (0..1).include?(saturation) raise ArgumentError, "Lightness #{lightness} was not between 0 and 1" unless (0..1).include?(lightness) chroma = (1 - (2 * lightness - 1).abs) * saturation rgb = cylindrical_to_cubic(hue, saturation, lightness, chroma) rgb.map! { |component| ((component + lightness - 0.5 * chroma) * 255).to_i } rgb << alpha self.rgba(*rgb) end # Convert one HSL or HSV triple and associated chroma to a scaled rgb triple # # This method encapsulates the shared mathematical operations needed to # convert coordinates from a cylindrical colorspace such as HSL or HSV into # coordinates of the RGB colorspace. # # Even though chroma values are derived from the other three coordinates, # the formula for calculating chroma differs for each colorspace. Since it # is calculated differently for each colorspace, it must be passed in as # a parameter. # # @param [Fixnum] hue The hue-component (0-360) # @param [Fixnum] saturation The saturation-component (0-1) # @param [Fixnum] y_component The y_component can represent either lightness # or brightness/value (0-1) depending on which scheme (HSV/HSL) is being used. # @param [Fixnum] chroma The associated chroma value. # @return [Array] A scaled r,g,b triple. Scheme-dependent # adjustments are still needed to reach the true r,g,b values. # @see http://en.wikipedia.org/wiki/HSL_and_HSV # @see http://www.tomjewett.com/colors/hsb.html # @private def cylindrical_to_cubic(hue, saturation, y_component, chroma) hue_prime = hue.fdiv(60) x = chroma * (1 - (hue_prime % 2 - 1).abs) case hue_prime when (0...1); [chroma, x, 0] when (1...2); [x, chroma, 0] when (2...3); [0, chroma, x] when (3...4); [0, x, chroma] when (4...5); [x, 0, chroma] when (5...6); [chroma, 0, x] end end private :cylindrical_to_cubic #################################################################### # PROPERTIES #################################################################### # Returns the red-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def r(value) (value & 0xff000000) >> 24 end # Returns the green-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def g(value) (value & 0x00ff0000) >> 16 end # Returns the blue-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def b(value) (value & 0x0000ff00) >> 8 end # Returns the alpha channel value for the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def a(value) value & 0x000000ff end # Returns true if this color is fully opaque. # # @param [Integer] value The color to test. # @return [true, false] True if the alpha channel equals MAX. def opaque?(value) a(value) == 0x000000ff end # Returns the opaque value of this color by removing the alpha channel. # @param [Integer] value The color to transform. # @return [Integer] The opaque color def opaque!(value) value | 0x000000ff end # Returns true if this color is fully transparent. # # @param [Integer] value The color to test. # @return [true, false] True if the r, g and b component are equal. def grayscale?(value) r(value) == b(value) && b(value) == g(value) end # Returns true if this color is fully transparent. # # @param [Integer] value The color to test. # @return [true, false] True if the alpha channel equals 0. def fully_transparent?(value) a(value) == 0x00000000 end #################################################################### # ALPHA COMPOSITION #################################################################### # Multiplies two fractions using integer math, where the fractions are # stored using an integer between 0 and 255. This method is used as a # helper method for compositing colors using integer math. # # This is a quicker implementation of ((a * b) / 255.0).round. # # @param [Integer] a The first fraction. # @param [Integer] b The second fraction. # @return [Integer] The result of the multiplication. def int8_mult(a, b) t = a * b + 0x80 ((t >> 8) + t) >> 8 end # Composes two colors with an alpha channel using integer math. # # This version is faster than the version based on floating point math, so # this compositing function is used by default. # # @param [Integer] fg The foreground color. # @param [Integer] bg The background color. # @return [Integer] The composited color. # @see ChunkyPNG::Color#compose_precise def compose_quick(fg, bg) return fg if opaque?(fg) || fully_transparent?(bg) return bg if fully_transparent?(fg) a_com = int8_mult(0xff - a(fg), a(bg)) new_r = int8_mult(a(fg), r(fg)) + int8_mult(a_com, r(bg)) new_g = int8_mult(a(fg), g(fg)) + int8_mult(a_com, g(bg)) new_b = int8_mult(a(fg), b(fg)) + int8_mult(a_com, b(bg)) new_a = a(fg) + a_com rgba(new_r, new_g, new_b, new_a) end # Composes two colors with an alpha channel using floating point math. # # This method uses more precise floating point math, but this precision is # lost when the result is converted back to an integer. Because it is # slower than the version based on integer math, that version is preferred. # # @param [Integer] fg The foreground color. # @param [Integer] bg The background color. # @return [Integer] The composited color. # @see ChunkyPNG::Color#compose_quick def compose_precise(fg, bg) return fg if opaque?(fg) || fully_transparent?(bg) return bg if fully_transparent?(fg) fg_a = a(fg).to_f / MAX bg_a = a(bg).to_f / MAX a_com = (1.0 - fg_a) * bg_a new_r = (fg_a * r(fg) + a_com * r(bg)).round new_g = (fg_a * g(fg) + a_com * g(bg)).round new_b = (fg_a * b(fg) + a_com * b(bg)).round new_a = ((fg_a + a_com) * MAX).round rgba(new_r, new_g, new_b, new_a) end alias :compose :compose_quick # Blends the foreground and background color by taking the average of # the components. # # @param [Integer] fg The foreground color. # @param [Integer] bg The foreground color. # @return [Integer] The blended color. def blend(fg, bg) (fg + bg) >> 1 end # Interpolates the foreground and background colors by the given alpha # value. This also blends the alpha channels themselves. # # A blending factor of 255 will give entirely the foreground, # while a blending factor of 0 will give the background. # # @param [Integer] fg The foreground color. # @param [Integer] bg The background color. # @param [Integer] alpha The blending factor (fixed 8bit) # @param [Integer] The interpolated color. def interpolate_quick(fg, bg, alpha) return fg if alpha >= 255 return bg if alpha <= 0 alpha_com = 255 - alpha new_r = int8_mult(alpha, r(fg)) + int8_mult(alpha_com, r(bg)) new_g = int8_mult(alpha, g(fg)) + int8_mult(alpha_com, g(bg)) new_b = int8_mult(alpha, b(fg)) + int8_mult(alpha_com, b(bg)) new_a = int8_mult(alpha, a(fg)) + int8_mult(alpha_com, a(bg)) rgba(new_r, new_g, new_b, new_a) end # Calculates the grayscale teint of an RGB color. # # @param [Integer] color The color to convert. # @return [Integer] The grayscale teint of the input color, 0-255. def grayscale_teint(color) (r(color) * 0.3 + g(color) * 0.59 + b(color) * 0.11).round end # Converts a color to a fiting grayscale value. It will conserve the alpha # channel. # # This method will return a full color value, with the R, G, and B value # set to the grayscale teint calcuated from the input color's R, G and B # values. # # @param [Integer] color The color to convert. # @return [Integer] The input color, converted to the best fitting # grayscale. # @see #grayscale_teint def to_grayscale(color) grayscale_alpha(grayscale_teint(color), a(color)) end # Lowers the intensity of a color, by lowering its alpha by a given factor. # @param [Integer] color The color to adjust. # @param [Integer] factor Fade factor as an integer between 0 and 255. # @return [Integer] The faded color. def fade(color, factor) new_alpha = int8_mult(a(color), factor) (color & 0xffffff00) | new_alpha end # Decomposes a color, given a color, a mask color and a background color. # The returned color will be a variant of the mask color, with the alpha # channel set to the best fitting value. This basically is the reverse # operation if alpha composition. # # If the color cannot be decomposed, this method will return the fully # transparent variant of the mask color. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being # composed # @param [Integer] bg The background color on which the color was composed. # @param [Integer] tolerance The decomposition tolerance level, a value # between 0 and 255. # @return [Integer] The decomposed color, a variant of the masked color # with the alpha channel set to an appropriate value. def decompose_color(color, mask, bg, tolerance = 1) if alpha_decomposable?(color, mask, bg, tolerance) mask & 0xffffff00 | decompose_alpha(color, mask, bg) else mask & 0xffffff00 end end # Checks whether an alpha channel value can successfully be composed # given the resulting color, the mask color and a background color, # all of which should be opaque. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being # composed # @param [Integer] bg The background color on which the color was composed. # @param [Integer] tolerance The decomposition tolerance level, a value # between 0 and 255. # @return [Boolean] True if the alpha component can be decomposed # successfully. # @see #decompose_alpha def alpha_decomposable?(color, mask, bg, tolerance = 1) components = decompose_alpha_components(color, mask, bg) sum = components.inject(0) { |a,b| a + b } max = components.max * 3 components.max <= 255 && components.min >= 0 && (sum + tolerance * 3) >= max end # Decomposes the alpha channel value given the resulting color, the mask # color and a background color, all of which should be opaque. # # Make sure to call {#alpha_decomposable?} first to see if the alpha # channel value can successfully decomposed with a given tolerance, # otherwise the return value of this method is undefined. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being # composed # @param [Integer] bg The background color on which the color was composed. # @return [Integer] The best fitting alpha channel, a value between 0 and # 255. # @see #alpha_decomposable? def decompose_alpha(color, mask, bg) components = decompose_alpha_components(color, mask, bg) (components.inject(0) { |a,b| a + b } / 3.0).round end # Decomposes an alpha channel for either the r, g or b color channel. # @param [:r, :g, :b] channel The channel to decompose the alpha channel # from. # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being # composed # @param [Integer] bg The background color on which the color was composed. # @return [Integer] The decomposed alpha value for the channel. def decompose_alpha_component(channel, color, mask, bg) cc, mc, bc = send(channel, color), send(channel, mask), send(channel, bg) return 0x00 if bc == cc return 0xff if bc == mc return 0xff if cc == mc (((bc - cc).to_f / (bc - mc).to_f) * MAX).round end # Decomposes the alpha channels for the r, g and b color channel. # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being # composed # @param [Integer] bg The background color on which the color was composed. # @return [Array] The decomposed alpha values for the r, g and b # channels. def decompose_alpha_components(color, mask, bg) [ decompose_alpha_component(:r, color, mask, bg), decompose_alpha_component(:g, color, mask, bg), decompose_alpha_component(:b, color, mask, bg) ] end #################################################################### # CONVERSIONS #################################################################### # Returns a string representing this color using hex notation (i.e. # #rrggbbaa). # # @param [Integer] value The color to convert. # @return [String] The color in hex notation, starting with a pound sign. def to_hex(color, include_alpha = true) include_alpha ? ('#%08x' % color) : ('#%06x' % [color >> 8]) end # Returns an array with the separate HSV components of a color. # # Because ChunkyPNG internally handles colors as Integers for performance # reasons, some rounding occurs when importing or exporting HSV colors # whose coordinates are float-based. Because of this rounding, #to_hsv and # #from_hsv may not be perfect inverses. # # This implementation follows the modern convention of 0 degrees hue # indicating red. # # @param [Integer] color The ChunkyPNG color to convert. # @param [Boolean] include_alpha Flag indicates whether a fourth element # representing alpha channel should be included in the returned array. # @return [Array[0]] The hue of the color (0-360) # @return [Array[1]] The saturation of the color (0-1) # @return [Array[2]] The value of the color (0-1) # @return [Array[3]] Optional fourth element for alpha, included if # include_alpha=true (0-255) # @see http://en.wikipedia.org/wiki/HSL_and_HSV def to_hsv(color, include_alpha = false) hue, chroma, max, min = hue_and_chroma(color) value = max saturation = chroma.zero? ? 0.0 : chroma.fdiv(value) include_alpha ? [hue, saturation, value, a(color)] : [hue, saturation, value] end alias_method :to_hsb, :to_hsv # Returns an array with the separate HSL components of a color. # # Because ChunkyPNG internally handles colors as Integers for performance # reasons, some rounding occurs when importing or exporting HSL colors # whose coordinates are float-based. Because of this rounding, #to_hsl and # #from_hsl may not be perfect inverses. # # This implementation follows the modern convention of 0 degrees hue indicating red. # # @param [Integer] color The ChunkyPNG color to convert. # @param [Boolean] include_alpha Flag indicates whether a fourth element # representing alpha channel should be included in the returned array. # @return [Array[0]] The hue of the color (0-360) # @return [Array[1]] The saturation of the color (0-1) # @return [Array[2]] The lightness of the color (0-1) # @return [Array[3]] Optional fourth element for alpha, included if # include_alpha=true (0-255) # @see http://en.wikipedia.org/wiki/HSL_and_HSV def to_hsl(color, include_alpha = false) hue, chroma, max, min = hue_and_chroma(color) lightness = 0.5 * (max + min) saturation = chroma.zero? ? 0.0 : chroma.fdiv(1 - (2 * lightness - 1).abs) include_alpha ? [hue, saturation, lightness, a(color)] : [hue, saturation, lightness] end # This method encapsulates the logic needed to extract hue and chroma from # a ChunkPNG color. This logic is shared by the cylindrical HSV/HSB and HSL # color space models. # # @param [Integer] A ChunkyPNG color. # @return [Fixnum] hue The hue of the color (0-360) # @return [Fixnum] chroma The chroma of the color (0-1) # @return [Fixnum] max The magnitude of the largest scaled rgb component (0-1) # @return [Fixnum] min The magnitude of the smallest scaled rgb component (0-1) # @private def hue_and_chroma(color) scaled_rgb = to_truecolor_bytes(color) scaled_rgb.map! { |component| component.fdiv(255) } min, max = scaled_rgb.minmax chroma = max - min r, g, b = scaled_rgb hue_prime = chroma.zero? ? 0 : case max when r; (g - b).fdiv(chroma) when g; (b - r).fdiv(chroma) + 2 when b; (r - g).fdiv(chroma) + 4 else 0 end hue = 60 * hue_prime return hue.round, chroma, max, min end private :hue_and_chroma # Returns an array with the separate RGBA values for this color. # # @param [Integer] color The color to convert. # @return [Array] An array with 4 Integer elements. def to_truecolor_alpha_bytes(color) [r(color), g(color), b(color), a(color)] end # Returns an array with the separate RGB values for this color. The alpha # channel will be discarded. # # @param [Integer] color The color to convert. # @return [Array] An array with 3 Integer elements. def to_truecolor_bytes(color) [r(color), g(color), b(color)] end # Returns an array with the grayscale teint value for this color. # # This method expects the r, g, and b value to be equal, and the alpha # channel will be discarded. # # @param [Integer] color The grayscale color to convert. # @return [Array] An array with 1 Integer element. def to_grayscale_bytes(color) [b(color)] # assumption r == g == b end # Returns an array with the grayscale teint and alpha channel values for # this color. # # This method expects the color to be grayscale, i.e. r, g, and b value to # be equal and uses only the B channel. If you need to convert a color to # grayscale first, see {#to_grayscale}. # # @param [Integer] color The grayscale color to convert. # @return [Array] An array with 2 Integer elements. # @see #to_grayscale def to_grayscale_alpha_bytes(color) [b(color), a(color)] # assumption r == g == b end #################################################################### # COMPARISON #################################################################### # Compute the Euclidean distance between 2 colors in RGBA # # This method simply takes the Euclidean distance between the RGBA channels # of 2 colors, which gives us a measure of how different the two colors # are. # # Although it would be more perceptually accurate to calculate a proper # Delta E in Lab colorspace, this method should serve many use-cases while # avoiding the overhead of converting RGBA to Lab. # # @param pixel_after [Integer] # @param pixel_before [Integer] # @return [Float] def euclidean_distance_rgba(pixel_after, pixel_before) Math.sqrt( (r(pixel_after) - r(pixel_before))**2 + (g(pixel_after) - g(pixel_before))**2 + (b(pixel_after) - b(pixel_before))**2 + (a(pixel_after) - a(pixel_before))**2 ) end # Could be simplified as MAX * 2, but this format mirrors the math in # {#euclidean_distance_rgba} # @return [Float] The maximum Euclidean distance of two RGBA colors. MAX_EUCLIDEAN_DISTANCE_RGBA = Math.sqrt(MAX**2 * 4) #################################################################### # COLOR CONSTANTS #################################################################### # @return [Hash] All the predefined color names in HTML. PREDEFINED_COLORS = { :aliceblue => 0xf0f8ff00, :antiquewhite => 0xfaebd700, :aqua => 0x00ffff00, :aquamarine => 0x7fffd400, :azure => 0xf0ffff00, :beige => 0xf5f5dc00, :bisque => 0xffe4c400, :black => 0x00000000, :blanchedalmond => 0xffebcd00, :blue => 0x0000ff00, :blueviolet => 0x8a2be200, :brown => 0xa52a2a00, :burlywood => 0xdeb88700, :cadetblue => 0x5f9ea000, :chartreuse => 0x7fff0000, :chocolate => 0xd2691e00, :coral => 0xff7f5000, :cornflowerblue => 0x6495ed00, :cornsilk => 0xfff8dc00, :crimson => 0xdc143c00, :cyan => 0x00ffff00, :darkblue => 0x00008b00, :darkcyan => 0x008b8b00, :darkgoldenrod => 0xb8860b00, :darkgray => 0xa9a9a900, :darkgrey => 0xa9a9a900, :darkgreen => 0x00640000, :darkkhaki => 0xbdb76b00, :darkmagenta => 0x8b008b00, :darkolivegreen => 0x556b2f00, :darkorange => 0xff8c0000, :darkorchid => 0x9932cc00, :darkred => 0x8b000000, :darksalmon => 0xe9967a00, :darkseagreen => 0x8fbc8f00, :darkslateblue => 0x483d8b00, :darkslategray => 0x2f4f4f00, :darkslategrey => 0x2f4f4f00, :darkturquoise => 0x00ced100, :darkviolet => 0x9400d300, :deeppink => 0xff149300, :deepskyblue => 0x00bfff00, :dimgray => 0x69696900, :dimgrey => 0x69696900, :dodgerblue => 0x1e90ff00, :firebrick => 0xb2222200, :floralwhite => 0xfffaf000, :forestgreen => 0x228b2200, :fuchsia => 0xff00ff00, :gainsboro => 0xdcdcdc00, :ghostwhite => 0xf8f8ff00, :gold => 0xffd70000, :goldenrod => 0xdaa52000, :gray => 0x80808000, :grey => 0x80808000, :green => 0x00800000, :greenyellow => 0xadff2f00, :honeydew => 0xf0fff000, :hotpink => 0xff69b400, :indianred => 0xcd5c5c00, :indigo => 0x4b008200, :ivory => 0xfffff000, :khaki => 0xf0e68c00, :lavender => 0xe6e6fa00, :lavenderblush => 0xfff0f500, :lawngreen => 0x7cfc0000, :lemonchiffon => 0xfffacd00, :lightblue => 0xadd8e600, :lightcoral => 0xf0808000, :lightcyan => 0xe0ffff00, :lightgoldenrodyellow => 0xfafad200, :lightgray => 0xd3d3d300, :lightgrey => 0xd3d3d300, :lightgreen => 0x90ee9000, :lightpink => 0xffb6c100, :lightsalmon => 0xffa07a00, :lightseagreen => 0x20b2aa00, :lightskyblue => 0x87cefa00, :lightslategray => 0x77889900, :lightslategrey => 0x77889900, :lightsteelblue => 0xb0c4de00, :lightyellow => 0xffffe000, :lime => 0x00ff0000, :limegreen => 0x32cd3200, :linen => 0xfaf0e600, :magenta => 0xff00ff00, :maroon => 0x80000000, :mediumaquamarine => 0x66cdaa00, :mediumblue => 0x0000cd00, :mediumorchid => 0xba55d300, :mediumpurple => 0x9370d800, :mediumseagreen => 0x3cb37100, :mediumslateblue => 0x7b68ee00, :mediumspringgreen => 0x00fa9a00, :mediumturquoise => 0x48d1cc00, :mediumvioletred => 0xc7158500, :midnightblue => 0x19197000, :mintcream => 0xf5fffa00, :mistyrose => 0xffe4e100, :moccasin => 0xffe4b500, :navajowhite => 0xffdead00, :navy => 0x00008000, :oldlace => 0xfdf5e600, :olive => 0x80800000, :olivedrab => 0x6b8e2300, :orange => 0xffa50000, :orangered => 0xff450000, :orchid => 0xda70d600, :palegoldenrod => 0xeee8aa00, :palegreen => 0x98fb9800, :paleturquoise => 0xafeeee00, :palevioletred => 0xd8709300, :papayawhip => 0xffefd500, :peachpuff => 0xffdab900, :peru => 0xcd853f00, :pink => 0xffc0cb00, :plum => 0xdda0dd00, :powderblue => 0xb0e0e600, :purple => 0x80008000, :red => 0xff000000, :rosybrown => 0xbc8f8f00, :royalblue => 0x4169e100, :saddlebrown => 0x8b451300, :salmon => 0xfa807200, :sandybrown => 0xf4a46000, :seagreen => 0x2e8b5700, :seashell => 0xfff5ee00, :sienna => 0xa0522d00, :silver => 0xc0c0c000, :skyblue => 0x87ceeb00, :slateblue => 0x6a5acd00, :slategray => 0x70809000, :slategrey => 0x70809000, :snow => 0xfffafa00, :springgreen => 0x00ff7f00, :steelblue => 0x4682b400, :tan => 0xd2b48c00, :teal => 0x00808000, :thistle => 0xd8bfd800, :tomato => 0xff634700, :turquoise => 0x40e0d000, :violet => 0xee82ee00, :wheat => 0xf5deb300, :white => 0xffffff00, :whitesmoke => 0xf5f5f500, :yellow => 0xffff0000, :yellowgreen => 0x9acd3200 } # Gets a color value based on a HTML color name. # # The color name is flexible. E.g. 'yellowgreen', 'Yellow # green', 'YellowGreen', 'YELLOW_GREEN' and # :yellow_green will all return the same color value. # # You can include a opacity level in the color name (e.g. 'red @ # 0.5') or give an explicit opacity value as second argument. If no # opacity value is given, the color will be fully opaque. # # @param [Symbol, String] color_name The color name. It may include an # opacity specifier like @ 0.8 to set the color's opacity. # @param [Integer] opacity The opacity value for the color between 0 and # 255. Overrides any opacity value given in the color name. # @return [Integer] The color value. # @raise [ChunkyPNG::Exception] If the color name was not recognized. def html_color(color_name, opacity = nil) if color_name.to_s =~ HTML_COLOR_REGEXP opacity ||= $2 ? ($2.to_f * 255.0).round : 0xff base_color_name = $1.gsub(/[^a-z]+/i, '').downcase.to_sym return PREDEFINED_COLORS[base_color_name] | opacity if PREDEFINED_COLORS.has_key?(base_color_name) end raise ArgumentError, "Unknown color name #{color_name}!" end # @return [Integer] Black pixel/color BLACK = rgb( 0, 0, 0) # @return [Integer] White pixel/color WHITE = rgb(255, 255, 255) # @return [Integer] Fully transparent pixel/color TRANSPARENT = rgba(0, 0, 0, 0) #################################################################### # STATIC UTILITY METHODS #################################################################### # Returns the number of sample values per pixel. # @param [Integer] color_mode The color mode being used. # @return [Integer] The number of sample values per pixel. def samples_per_pixel(color_mode) case color_mode when ChunkyPNG::COLOR_INDEXED; 1 when ChunkyPNG::COLOR_TRUECOLOR; 3 when ChunkyPNG::COLOR_TRUECOLOR_ALPHA; 4 when ChunkyPNG::COLOR_GRAYSCALE; 1 when ChunkyPNG::COLOR_GRAYSCALE_ALPHA; 2 else raise ChunkyPNG::NotSupported, "Don't know the number of samples for this colormode: #{color_mode}!" end end # Returns the size in bytes of a pixel when it is stored using a given # color mode. # # @param [Integer] color_mode The color mode in which the pixels are # stored. # @return [Integer] The number of bytes used per pixel in a datastream. def pixel_bytesize(color_mode, depth = 8) return 1 if depth < 8 (pixel_bitsize(color_mode, depth) + 7) >> 3 end # Returns the size in bits of a pixel when it is stored using a given color # mode. # # @param [Integer] color_mode The color mode in which the pixels are # stored. # @param [Integer] depth The color depth of the pixels. # @return [Integer] The number of bytes used per pixel in a datastream. def pixel_bitsize(color_mode, depth = 8) samples_per_pixel(color_mode) * depth end # Returns the number of bytes used per scanline. # @param [Integer] color_mode The color mode in which the pixels are # stored. # @param [Integer] depth The color depth of the pixels. # @param [Integer] width The number of pixels per scanline. # @return [Integer] The number of bytes used per scanline in a datastream. def scanline_bytesize(color_mode, depth, width) ((pixel_bitsize(color_mode, depth) * width) + 7) >> 3 end # Returns the number of bytes used for an image pass # @param [Integer] color_mode The color mode in which the pixels are # stored. # @param [Integer] depth The color depth of the pixels. # @param [Integer] width The width of the image pass. # @param [Integer] width The height of the image pass. # @return [Integer] The number of bytes used per scanline in a datastream. def pass_bytesize(color_mode, depth, width, height) return 0 if width == 0 || height == 0 (scanline_bytesize(color_mode, depth, width) + 1) * height end end end