# frozen_string_literal: true require 'rumale/base/estimator' require 'rumale/validation' require 'rumale/tree/ext' require 'rumale/tree/node' module Rumale module Tree # BaseDecisionTree is an abstract class for implementation of decision tree-based estimator. # This class is used internally. class BaseDecisionTree < ::Rumale::Base::Estimator # Initialize a decision tree-based estimator. # # @param criterion [String] The function to evalue spliting point. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, decision tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(criterion: nil, max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) super() @params = { criterion: criterion, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end # Return the index of the leaf that each sample reached. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample. def apply(x) x = ::Rumale::Validation.check_convert_sample_array(x) Numo::Int32[*(Array.new(x.shape[0]) { |n| partial_apply(@tree, x[n, true]) })] end private def partial_apply(tree, sample) node = tree until node.leaf node = if node.right.nil? node.left elsif node.left.nil? node.right else sample[node.feature_id] <= node.threshold ? node.left : node.right end end node.leaf_id end def build_tree(x, y) y = y.expand_dims(1).dup if y.shape[1].nil? @feature_ids = Array.new(x.shape[1]) { |v| v } @tree = grow_node(0, x, y, impurity(y)) @feature_ids = nil nil end def grow_node(depth, x, y, impurity) # rubocop:disable Metrics/AbcSize, Metrics/PerceivedComplexity # intialize node. n_samples = x.shape[0] node = Node.new(depth: depth, impurity: impurity, n_samples: n_samples) # terminate growing. return nil if !@params[:max_leaf_nodes].nil? && @n_leaves >= @params[:max_leaf_nodes] return nil if n_samples < @params[:min_samples_leaf] return put_leaf(node, y) if n_samples == @params[:min_samples_leaf] return put_leaf(node, y) if !@params[:max_depth].nil? && depth == @params[:max_depth] return put_leaf(node, y) if stop_growing?(y) # calculate optimal parameters. feature_id, left_imp, right_imp, threshold, gain = rand_ids.map { |n| [n, *best_split(x[true, n], y, impurity)] }.max_by(&:last) return put_leaf(node, y) if gain.nil? || gain.zero? left_ids = x[true, feature_id].le(threshold).where right_ids = x[true, feature_id].gt(threshold).where node.left = if y.ndim == 1 grow_node(depth + 1, x[left_ids, true], y[left_ids], left_imp) else grow_node(depth + 1, x[left_ids, true], y[left_ids, true], left_imp) end node.right = if y.ndim == 1 grow_node(depth + 1, x[right_ids, true], y[right_ids], right_imp) else grow_node(depth + 1, x[right_ids, true], y[right_ids, true], right_imp) end return put_leaf(node, y) if node.left.nil? && node.right.nil? node.feature_id = feature_id node.threshold = threshold node.leaf = false node end def stop_growing?(_y) raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end def put_leaf(_node, _y) raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end def rand_ids @feature_ids.sample(@params[:max_features], random: @sub_rng) end def best_split(_features, _y, _impurity) raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end def impurity(_y) raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end def eval_importance(n_samples, n_features) @feature_importances = Numo::DFloat.zeros(n_features) eval_importance_at_node(@tree) @feature_importances /= n_samples normalizer = @feature_importances.sum @feature_importances /= normalizer if normalizer > 0.0 nil end def eval_importance_at_node(node) return nil if node.leaf return nil if node.left.nil? || node.right.nil? gain = node.n_samples * node.impurity - node.left.n_samples * node.left.impurity - node.right.n_samples * node.right.impurity @feature_importances[node.feature_id] += gain eval_importance_at_node(node.left) eval_importance_at_node(node.right) end end end end