MDArray

MDArray is a multi dimensional array implemented for JRuby inspired by NumPy (www.numpy.org) and Narray (narray.rubyforge.org) by Masahiro Tanaka. MDArray stands on the shoulders of Java-NetCDF and Parallel Colt.

NetCDF-Java Library is a Java interface to NetCDF files, as well as to many other types of scientific data formats. It is developed and distributed by Unidata (http://www.unidata.ucar.edu).

Parallel Colt (sites.google.com/site/piotrwendykier/software/parallelcolt) is a multithreaded version of Colt (http://acs.lbl.gov/software/colt/). Colt provides a set of Open Source Libraries for High Performance Scientific and Technical Computing in Java. Scientific and technical computing is characterized by demanding problem sizes and a need for high performance at reasonably small memory footprint.

MDArray and SciRuby

MDArray subscribes fully to the SciRuby Manifesto (http://sciruby.com/).

“Ruby has for some time had no equivalent to the beautifully constructed NumPy, SciPy, and matplotlib libraries for Python.

We believe that the time for a Ruby science and visualization package has come. Sometimes when a solution of sugar and water becomes super-saturated, from it precipitates a pure, delicious, and diabetes-inducing crystal of sweetness, induced by no more than the tap of a finger. So is occurring now, we believe, with numeric and visualization libraries for Ruby.”

Main properties

Descriptive statistics methods

auto_correlation, correlation, covariance, durbin_watson, frequencies, geometric_mean, harmonic_mean, kurtosis, lag1, max, mean, mean_deviation, median, min, moment, moment3, moment4, pooled_mean, pooled_variance, product, quantile, quantile_inverse, rank_interpolated, rms, sample_covariance, sample_kurtosis, sample_kurtosis_standard_error, sample_skew, sample_skew_standard_error, sample_standard_deviation, sample_variance, sample_weighted_variance, skew, split,
standard_deviation, standard_error, sum, sum_of_inversions, sum_of_logarithms, sum_of_powers, sum_of_power_deviations, sum_of_squares, sum_of_squared_deviations, trimmed_mean, variance, weighted_mean, weighted_rms, weighted_sums, winsorized_mean.

Installation and download

Contributors

Homepages

HISTORY