module DNN module Layers module LayerNode def forward(*inputs) xs = inputs.map(&:data) prevs = inputs.map { |input| input.is_a?(Tensor) ? input.link : input } ys = forward_node(*xs) num_outputs = (ys.is_a?(Array) ? ys.length : 1) link = Link.new(prevs: prevs, layer_node: self, num_outputs: num_outputs) prevs.map { |prev| prev.next = link if prev.is_a?(Link) } Tensor.convert(ys, link) end def forward_node(*xs) raise NotImplementedError, "Class '#{self.class.name}' has implement method 'forward_node'" end def backward_node(*dys) raise NotImplementedError, "Class '#{self.class.name}' has implement method 'backward_node'" end end # Super class of all layer classes. class Layer attr_reader :input_shape attr_reader :output_shape def self.call(x, *args, **kwargs) new(*args, **kwargs).(x) end def self.from_hash(hash) return nil unless hash layer_class = DNN.const_get(hash[:class]) layer = layer_class.allocate raise DNNError, "#{layer.class} is not an instance of #{self} class." unless layer.is_a?(self) layer.load_hash(hash) layer end def initialize @built = false end # Forward propagation and create a link. # @param [Tensor | Param] input Input tensor or param. # @return [Tensor] Output tensor. def call(input) input = Tensor.convert(input) if !input.is_a?(Tensor) && !input.is_a?(Param) build(input.data.shape[1..-1]) unless built? forward(input) end # Build the layer. # @param [Array] input_shape Setting the shape of the input data. def build(input_shape) @input_shape = input_shape @output_shape = compute_output_shape @built = true end # @return [Boolean] If layer have already been built then return true. def built? @built end # Forward propagation. # @param [Tensor] input Input tensor or param. # @return [Tensor] Output tensor. def forward(input) raise NotImplementedError, "Class '#{self.class.name}' has implement method 'forward'" end # Please reimplement this method as needed. # The default implementation return input_shape. # @return [Array] Return the shape of the output data. def compute_output_shape @input_shape end def <<(tensor) self.(tensor) end # Layer to a hash. def to_hash(merge_hash = nil) hash = { class: self.class.name } hash.merge!(merge_hash) if merge_hash hash end def load_hash(hash) initialize end # Clean the layer state. def clean input_shape = @input_shape hash = to_hash instance_variables.each do |ivar| instance_variable_set(ivar, nil) end load_hash(hash) build(input_shape) end end # This class is a superclass of all classes with learning parameters. class TrainableLayer < Layer # @return [Boolean] Setting false prevents learning of parameters. attr_accessor :trainable def initialize super() @trainable = true end # @return [Array] The parameters of the layer. def get_params raise NotImplementedError, "Class '#{self.class.name}' has implement method 'get_params'" end def clean input_shape = @input_shape hash = to_hash params = get_params instance_variables.each do |ivar| instance_variable_set(ivar, nil) end load_hash(hash) build(input_shape) params.each do |(key, param)| param.data = nil param.grad = Xumo::SFloat[0] if param.grad instance_variable_set("@#{key}", param) end end end class InputLayer < Layer # @param [Array] input_dim_or_shape Setting the shape or dimension of the input data. def initialize(input_dim_or_shape) super() @input_shape = input_dim_or_shape.is_a?(Array) ? input_dim_or_shape : [input_dim_or_shape] end def build(input_shape) super(@input_shape) end def forward(x) unless x.shape[1..-1] == @input_shape raise DNNShapeError, "The shape of x does not match the input shape. input shape is #{@input_shape}, but x shape is #{x.shape[1..-1]}." end x end def to_proc method(:call).to_proc end def to_hash super(input_shape: @input_shape) end def load_hash(hash) initialize(hash[:input_shape]) end end # It is a superclass of all connection layers. class Connection < TrainableLayer attr_reader :weight attr_reader :bias attr_reader :weight_initializer attr_reader :bias_initializer attr_reader :weight_regularizer attr_reader :bias_regularizer # @param [DNN::Initializers::Initializer] weight_initializer Weight initializer. # @param [DNN::Initializers::Initializer] bias_initializer Bias initializer. # @param [DNN::Regularizers::Regularizer | NilClass] weight_regularizer Weight regularizer. # @param [DNN::Regularizers::Regularizer | NilClass] bias_regularizer Bias regularizer. # @param [Boolean] use_bias Whether to use bias. def initialize(weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super() @weight_initializer = weight_initializer @bias_initializer = bias_initializer @weight_regularizer = weight_regularizer @bias_regularizer = bias_regularizer @weight = Param.new(nil, Xumo::SFloat[0]) @bias = use_bias ? Param.new(nil, Xumo::SFloat[0]) : nil end def regularizers regularizers = [] regularizers << @weight_regularizer if @weight_regularizer regularizers << @bias_regularizer if @bias_regularizer regularizers end # @return [Boolean] Return whether to use bias. def use_bias @bias ? true : false end def to_hash(merge_hash) super({ weight_initializer: @weight_initializer.to_hash, bias_initializer: @bias_initializer.to_hash, weight_regularizer: @weight_regularizer&.to_hash, bias_regularizer: @bias_regularizer&.to_hash, use_bias: use_bias }.merge(merge_hash)) end def get_params { weight: @weight, bias: @bias } end private def init_weight_and_bias @weight_initializer.init_param(self, @weight) @weight_regularizer.param = @weight if @weight_regularizer if @bias @bias_initializer.init_param(self, @bias) @bias_regularizer.param = @bias if @bias_regularizer end end end class Dense < Connection include LayerNode attr_reader :num_units # @param [Integer] num_units Number of nodes. def initialize(num_units, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_units = num_units end def build(input_shape) unless input_shape.length == 1 raise DNNShapeError, "Input shape is #{input_shape}. But input shape must be 1 dimensional." end super num_prev_units = input_shape[0] @weight.data = Xumo::SFloat.new(num_prev_units, @num_units) @bias.data = Xumo::SFloat.new(@num_units) if @bias init_weight_and_bias end def forward_node(x) @x = x y = x.dot(@weight.data) y += @bias.data if @bias y end def backward_node(dy) if @trainable @weight.grad += @x.transpose.dot(dy) @bias.grad += dy.sum(0) if @bias end dy.dot(@weight.data.transpose) end def compute_output_shape [@num_units] end def to_hash super(num_units: @num_units) end def load_hash(hash) initialize(hash[:num_units], weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]), bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]), weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]), bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias]) end end class Flatten < Layer def forward(x) Reshape.(x, @output_shape) end def compute_output_shape [@input_shape.reduce(:*)] end end class Reshape < Layer include LayerNode def initialize(shape) super() @shape = shape end def compute_output_shape @shape end def forward_node(x) if DNN.use_cumo? _forward_gpu(x) else _forward_cpu(x) end end def backward_node(dy) if DNN.use_cumo? _backward_gpu(dy) else _backward_cpu(dy) end end def _forward_cpu(x) x.reshape(x.shape[0], *@output_shape) end def _backward_cpu(dy) dy.reshape(dy.shape[0], *@input_shape) end def _forward_gpu(x) x.flatten.reshape(x.shape[0], *@output_shape) end def _backward_gpu(dy) dy.flatten.reshape(dy.shape[0], *@input_shape) end def to_hash super(shape: @shape) end def load_hash(hash) initialize(hash[:shape]) end end class Lasso < Layer include LayerNode attr_accessor :l1_lambda # @param [Float] l1_lambda L1 regularizer coefficient. def initialize(l1_lambda = 0.01) super() @l1_lambda = l1_lambda end def forward_node(x) @x = x @l1_lambda * x.abs.sum end def backward_node(dy) dx = Xumo::SFloat.ones(*@x.shape) dx[@x < 0] = -1 @l1_lambda * dx end def to_hash super(l1_lambda: @l1_lambda) end def load_hash(hash) initialize(hash[:l1_lambda]) end end class Ridge < Layer include LayerNode attr_accessor :l2_lambda # @param [Float] l2_lambda L2 regularizer coefficient. def initialize(l2_lambda = 0.01) super() @l2_lambda = l2_lambda end def forward_node(x) @x = x 0.5 * @l2_lambda * (x**2).sum end def backward_node(dy) @l2_lambda * @x end def to_hash super(l2_lambda: @l2_lambda) end def load_hash(hash) initialize(hash[:l2_lambda]) end end class Dropout < Layer include LayerNode attr_accessor :dropout_ratio attr_reader :use_scale # @param [Float] dropout_ratio Nodes dropout ratio. # @param [Integer] seed Seed of random number used for masking. # @param [Boolean] use_scale Set to true to scale the output according to the dropout ratio. def initialize(dropout_ratio = 0.5, seed: rand(1 << 31), use_scale: true) super() @dropout_ratio = dropout_ratio @seed = seed @use_scale = use_scale @mask = nil @rnd = Random.new(@seed) end def forward_node(x) if DNN.learning_phase Xumo::SFloat.srand(@rnd.rand(1 << 31)) @mask = Xumo::SFloat.cast(Xumo::SFloat.new(*x.shape).rand >= @dropout_ratio) x = x * @mask elsif @use_scale x *= (1 - @dropout_ratio) end x end def backward_node(dy) dy * @mask end def to_hash super(dropout_ratio: @dropout_ratio, seed: @seed, use_scale: @use_scale) end def load_hash(hash) initialize(hash[:dropout_ratio], seed: hash[:seed], use_scale: hash[:use_scale]) end end end end