Sha256: 74eb5b56fe862da45c5527ccdb1486977a806b04d872746f87d58e38b806252a
Contents?: true
Size: 1.63 KB
Versions: 1
Compression:
Stored size: 1.63 KB
Contents
module Xgb class Classifier def initialize(max_depth: 3, learning_rate: 0.1, n_estimators: 100, objective: "binary:logistic", importance_type: "gain") @params = { max_depth: max_depth, objective: objective, learning_rate: learning_rate } @n_estimators = n_estimators @importance_type = importance_type end def fit(x, y) n_classes = y.uniq.size params = @params.dup if n_classes > 2 params[:objective] = "multi:softprob" params[:num_class] = n_classes end dtrain = DMatrix.new(x, label: y) @booster = Xgb.train(params, dtrain, num_boost_round: @n_estimators) nil end def predict(data) dmat = DMatrix.new(data) y_pred = @booster.predict(dmat) if y_pred.first.is_a?(Array) # multiple classes y_pred.map do |v| v.map.with_index.max_by { |v2, i| v2 }.last end else y_pred.map { |v| v > 0.5 ? 1 : 0 } end end def predict_proba(data) dmat = DMatrix.new(data) y_pred = @booster.predict(dmat) if y_pred.first.is_a?(Array) # multiple classes y_pred else y_pred.map { |v| [1 - v, v] } end end def save_model(fname) @booster.save_model(fname) end def load_model(fname) @booster = Booster.new(params: @params, model_file: fname) end def feature_importances score = @booster.score(importance_type: @importance_type) scores = @booster.feature_names.map { |k| score[k] || 0.0 } total = scores.sum.to_f scores.map { |s| s / total } end end end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
xgb-0.1.1 | lib/xgb/classifier.rb |