/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2001 * * Last modified: * $Date: 2010-10-07 20:52:01 +1100 (Thu, 07 Oct 2010) $ by $Author: schulte $ * $Revision: 11473 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include using namespace Gecode; /** * \brief %Example: Magic squares * * Compute magic squares of arbitrary size * * See problem 19 at http://www.csplib.org/. * * \ingroup Example * */ class MagicSquare : public Script { private: /// Size of magic square const int n; /// Fields of square IntVarArray x; public: /// Post constraints MagicSquare(const SizeOptions& opt) : n(opt.size()), x(*this,n*n,1,n*n) { // Number of fields on square const int nn = n*n; // Sum of all a row, column, or diagonal const int s = nn*(nn+1) / (2*n); // Matrix-wrapper for the square Matrix m(x, n, n); for (int i = n; i--; ) { linear(*this, m.row(i), IRT_EQ, s, opt.icl()); linear(*this, m.col(i), IRT_EQ, s, opt.icl()); } // Both diagonals must have sum s { IntVarArgs d1y(n); IntVarArgs d2y(n); for (int i = n; i--; ) { d1y[i] = m(i,i); d2y[i] = m(n-i-1,i); } linear(*this, d1y, IRT_EQ, s, opt.icl()); linear(*this, d2y, IRT_EQ, s, opt.icl()); } // All fields must be distinct distinct(*this, x, opt.icl()); // Break some (few) symmetries rel(*this, m(0,0), IRT_GR, m(0,n-1)); rel(*this, m(0,0), IRT_GR, m(n-1,0)); branch(*this, x, INT_VAR_SIZE_MIN, INT_VAL_SPLIT_MIN); } /// Constructor for cloning \a s MagicSquare(bool share, MagicSquare& s) : Script(share,s), n(s.n) { x.update(*this, share, s.x); } /// Copy during cloning virtual Space* copy(bool share) { return new MagicSquare(share,*this); } /// Print solution virtual void print(std::ostream& os) const { // Matrix-wrapper for the square Matrix m(x, n, n); for (int i = 0; i(opt); return 0; } // STATISTICS: example-any