/* Copyright (c) 2016, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "internal.h" int tls13_init_key_schedule(SSL *ssl, const uint8_t *resumption_ctx, size_t resumption_ctx_len) { SSL_HANDSHAKE *hs = ssl->s3->hs; const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); hs->hash_len = EVP_MD_size(digest); /* Save the hash of the resumption context. */ unsigned resumption_hash_len; if (!EVP_Digest(resumption_ctx, resumption_ctx_len, hs->resumption_hash, &resumption_hash_len, digest, NULL)) { return 0; } /* Initialize the secret to the zero key. */ memset(hs->secret, 0, hs->hash_len); /* Initialize the rolling hashes and release the handshake buffer. */ if (!ssl3_init_handshake_hash(ssl)) { return 0; } ssl3_free_handshake_buffer(ssl); return 1; } int tls13_advance_key_schedule(SSL *ssl, const uint8_t *in, size_t len) { SSL_HANDSHAKE *hs = ssl->s3->hs; const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); return HKDF_extract(hs->secret, &hs->hash_len, digest, in, len, hs->secret, hs->hash_len); } static int hkdf_expand_label(uint8_t *out, const EVP_MD *digest, const uint8_t *secret, size_t secret_len, const uint8_t *label, size_t label_len, const uint8_t *hash, size_t hash_len, size_t len) { static const char kTLS13LabelVersion[] = "TLS 1.3, "; CBB cbb, child; uint8_t *hkdf_label; size_t hkdf_label_len; if (!CBB_init(&cbb, 2 + 1 + strlen(kTLS13LabelVersion) + label_len + 1 + hash_len) || !CBB_add_u16(&cbb, len) || !CBB_add_u8_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, (const uint8_t *)kTLS13LabelVersion, strlen(kTLS13LabelVersion)) || !CBB_add_bytes(&child, label, label_len) || !CBB_add_u8_length_prefixed(&cbb, &child) || !CBB_add_bytes(&child, hash, hash_len) || !CBB_finish(&cbb, &hkdf_label, &hkdf_label_len)) { CBB_cleanup(&cbb); return 0; } int ret = HKDF_expand(out, len, digest, secret, secret_len, hkdf_label, hkdf_label_len); OPENSSL_free(hkdf_label); return ret; } int tls13_get_context_hashes(SSL *ssl, uint8_t *out, size_t *out_len) { SSL_HANDSHAKE *hs = ssl->s3->hs; EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); unsigned handshake_len = 0; int ok = EVP_MD_CTX_copy_ex(&ctx, &ssl->s3->handshake_hash) && EVP_DigestFinal_ex(&ctx, out, &handshake_len); EVP_MD_CTX_cleanup(&ctx); if (!ok) { return 0; } memcpy(out + handshake_len, hs->resumption_hash, hs->hash_len); *out_len = handshake_len + hs->hash_len; return 1; } /* derive_secret derives a secret of length |len| and writes the result in |out| * with the given label and the current base secret and most recently-saved * handshake context. It returns one on success and zero on error. */ static int derive_secret(SSL *ssl, uint8_t *out, size_t len, const uint8_t *label, size_t label_len) { SSL_HANDSHAKE *hs = ssl->s3->hs; const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); uint8_t context_hashes[2 * EVP_MAX_MD_SIZE]; size_t context_hashes_len; if (!tls13_get_context_hashes(ssl, context_hashes, &context_hashes_len)) { return 0; } return hkdf_expand_label(out, digest, hs->secret, hs->hash_len, label, label_len, context_hashes, context_hashes_len, len); } int tls13_set_traffic_key(SSL *ssl, enum tls_record_type_t type, enum evp_aead_direction_t direction, const uint8_t *traffic_secret, size_t traffic_secret_len) { if (traffic_secret_len > 0xff) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } const char *phase; switch (type) { case type_early_handshake: phase = "early handshake key expansion, "; break; case type_early_data: phase = "early application data key expansion, "; break; case type_handshake: phase = "handshake key expansion, "; break; case type_data: phase = "application data key expansion, "; break; default: return 0; } size_t phase_len = strlen(phase); const char *purpose = "client write key"; if ((ssl->server && direction == evp_aead_seal) || (!ssl->server && direction == evp_aead_open)) { purpose = "server write key"; } size_t purpose_len = strlen(purpose); /* The longest label has length 38 (type_early_data) + 16 (either purpose * value). */ uint8_t label[38 + 16]; size_t label_len = phase_len + purpose_len; if (label_len > sizeof(label)) { assert(0); return 0; } memcpy(label, phase, phase_len); memcpy(label + phase_len, purpose, purpose_len); /* Look up cipher suite properties. */ const EVP_AEAD *aead; const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); size_t mac_secret_len, fixed_iv_len; if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len, SSL_get_session(ssl)->cipher, ssl3_protocol_version(ssl))) { return 0; } /* Derive the key. */ size_t key_len = EVP_AEAD_key_length(aead); uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; if (!hkdf_expand_label(key, digest, traffic_secret, traffic_secret_len, label, label_len, NULL, 0, key_len)) { return 0; } /* The IV's label ends in "iv" instead of "key". */ if (label_len < 3) { assert(0); return 0; } label_len--; label[label_len - 2] = 'i'; label[label_len - 1] = 'v'; /* Derive the IV. */ size_t iv_len = EVP_AEAD_nonce_length(aead); uint8_t iv[EVP_AEAD_MAX_NONCE_LENGTH]; if (!hkdf_expand_label(iv, digest, traffic_secret, traffic_secret_len, label, label_len, NULL, 0, iv_len)) { return 0; } SSL_AEAD_CTX *traffic_aead = SSL_AEAD_CTX_new( direction, ssl3_protocol_version(ssl), SSL_get_session(ssl)->cipher, key, key_len, NULL, 0, iv, iv_len); if (traffic_aead == NULL) { return 0; } if (direction == evp_aead_open) { if (!ssl->method->set_read_state(ssl, traffic_aead)) { return 0; } } else { if (!ssl->method->set_write_state(ssl, traffic_aead)) { return 0; } } /* Save the traffic secret. */ if (direction == evp_aead_open) { memmove(ssl->s3->read_traffic_secret, traffic_secret, traffic_secret_len); ssl->s3->read_traffic_secret_len = traffic_secret_len; } else { memmove(ssl->s3->write_traffic_secret, traffic_secret, traffic_secret_len); ssl->s3->write_traffic_secret_len = traffic_secret_len; } return 1; } static const char kTLS13LabelHandshakeTraffic[] = "handshake traffic secret"; static const char kTLS13LabelApplicationTraffic[] = "application traffic secret"; int tls13_set_handshake_traffic(SSL *ssl) { SSL_HANDSHAKE *hs = ssl->s3->hs; uint8_t traffic_secret[EVP_MAX_MD_SIZE]; if (!derive_secret(ssl, traffic_secret, hs->hash_len, (const uint8_t *)kTLS13LabelHandshakeTraffic, strlen(kTLS13LabelHandshakeTraffic)) || !ssl_log_secret(ssl, "HANDSHAKE_TRAFFIC_SECRET", traffic_secret, hs->hash_len) || !tls13_set_traffic_key(ssl, type_handshake, evp_aead_open, traffic_secret, hs->hash_len) || !tls13_set_traffic_key(ssl, type_handshake, evp_aead_seal, traffic_secret, hs->hash_len)) { return 0; } return 1; } int tls13_derive_traffic_secret_0(SSL *ssl) { SSL_HANDSHAKE *hs = ssl->s3->hs; return derive_secret(ssl, hs->traffic_secret_0, hs->hash_len, (const uint8_t *)kTLS13LabelApplicationTraffic, strlen(kTLS13LabelApplicationTraffic)) && ssl_log_secret(ssl, "TRAFFIC_SECRET_0", hs->traffic_secret_0, hs->hash_len); } int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); uint8_t *secret; size_t secret_len; if (direction == evp_aead_open) { secret = ssl->s3->read_traffic_secret; secret_len = ssl->s3->read_traffic_secret_len; } else { secret = ssl->s3->write_traffic_secret; secret_len = ssl->s3->write_traffic_secret_len; } if (!hkdf_expand_label(secret, digest, secret, secret_len, (const uint8_t *)kTLS13LabelApplicationTraffic, strlen(kTLS13LabelApplicationTraffic), NULL, 0, secret_len)) { return 0; } return tls13_set_traffic_key(ssl, type_data, direction, secret, secret_len); } static const char kTLS13LabelExporter[] = "exporter master secret"; static const char kTLS13LabelResumption[] = "resumption master secret"; int tls13_finalize_keys(SSL *ssl) { SSL_HANDSHAKE *hs = ssl->s3->hs; ssl->s3->exporter_secret_len = hs->hash_len; ssl->s3->new_session->master_key_length = hs->hash_len; if (!derive_secret( ssl, ssl->s3->exporter_secret, ssl->s3->exporter_secret_len, (const uint8_t *)kTLS13LabelExporter, strlen(kTLS13LabelExporter)) || !derive_secret(ssl, ssl->s3->new_session->master_key, ssl->s3->new_session->master_key_length, (const uint8_t *)kTLS13LabelResumption, strlen(kTLS13LabelResumption))) { return 0; } return 1; } int tls13_finished_mac(SSL *ssl, uint8_t *out, size_t *out_len, int is_server) { SSL_HANDSHAKE *hs = ssl->s3->hs; const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); uint8_t key[EVP_MAX_MD_SIZE]; size_t key_len = EVP_MD_size(digest); const uint8_t *traffic_secret; const char *label; if (is_server) { label = "server finished"; if (ssl->server) { traffic_secret = ssl->s3->write_traffic_secret; } else { traffic_secret = ssl->s3->read_traffic_secret; } } else { label = "client finished"; if (!ssl->server) { traffic_secret = ssl->s3->write_traffic_secret; } else { traffic_secret = ssl->s3->read_traffic_secret; } } uint8_t context_hashes[2 * EVP_MAX_MD_SIZE]; size_t context_hashes_len; unsigned len; if (!hkdf_expand_label(key, digest, traffic_secret, hs->hash_len, (const uint8_t *)label, strlen(label), NULL, 0, hs->hash_len) || !tls13_get_context_hashes(ssl, context_hashes, &context_hashes_len) || HMAC(digest, key, key_len, context_hashes, context_hashes_len, out, &len) == NULL) { return 0; } *out_len = len; return 1; } static const char kTLS13LabelResumptionPSK[] = "resumption psk"; static const char kTLS13LabelResumptionContext[] = "resumption context"; int tls13_resumption_psk(SSL *ssl, uint8_t *out, size_t out_len, const SSL_SESSION *session) { const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); return hkdf_expand_label(out, digest, session->master_key, session->master_key_length, (const uint8_t *)kTLS13LabelResumptionPSK, strlen(kTLS13LabelResumptionPSK), NULL, 0, out_len); } int tls13_resumption_context(SSL *ssl, uint8_t *out, size_t out_len, const SSL_SESSION *session) { const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); return hkdf_expand_label(out, digest, session->master_key, session->master_key_length, (const uint8_t *)kTLS13LabelResumptionContext, strlen(kTLS13LabelResumptionContext), NULL, 0, out_len); } int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len, const uint8_t *context, size_t context_len, int use_context) { const EVP_MD *digest = ssl_get_handshake_digest(ssl_get_algorithm_prf(ssl)); const uint8_t *hash = NULL; size_t hash_len = 0; if (use_context) { hash = context; hash_len = context_len; } return hkdf_expand_label(out, digest, ssl->s3->exporter_secret, ssl->s3->exporter_secret_len, (const uint8_t *)label, label_len, hash, hash_len, out_len); }