/* Copyright (c) 2020, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include "internal.h" #include "../fipsmodule/bn/internal.h" #include "../fipsmodule/ec/internal.h" #include "../internal.h" // This file implements hash-to-curve, as described in // draft-irtf-cfrg-hash-to-curve-16. // // This hash-to-curve implementation is written generically with the // expectation that we will eventually wish to support other curves. If it // becomes a performance bottleneck, some possible optimizations by // specializing it to the curve: // // - Rather than using a generic |felem_exp|, specialize the exponentation to // c2 with a faster addition chain. // // - |felem_mul| and |felem_sqr| are indirect calls to generic Montgomery // code. Given the few curves, we could specialize // |map_to_curve_simple_swu|. But doing this reasonably without duplicating // code in C is difficult. (C++ templates would be useful here.) // // - P-521's Z and c2 have small power-of-two absolute values. We could save // two multiplications in SSWU. (Other curves have reasonable values of Z // and inconvenient c2.) This is unlikely to be worthwhile without C++ // templates to make specializing more convenient. // expand_message_xmd implements the operation described in section 5.3.1 of // draft-irtf-cfrg-hash-to-curve-16. It returns one on success and zero on // error. static int expand_message_xmd(const EVP_MD *md, uint8_t *out, size_t out_len, const uint8_t *msg, size_t msg_len, const uint8_t *dst, size_t dst_len) { // See https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/352 if (dst_len == 0) { OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } int ret = 0; const size_t block_size = EVP_MD_block_size(md); const size_t md_size = EVP_MD_size(md); EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); // Long DSTs are hashed down to size. See section 5.3.3. static_assert(EVP_MAX_MD_SIZE < 256, "hashed DST still too large"); uint8_t dst_buf[EVP_MAX_MD_SIZE]; if (dst_len >= 256) { static const char kPrefix[] = "H2C-OVERSIZE-DST-"; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, kPrefix, sizeof(kPrefix) - 1) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestFinal_ex(&ctx, dst_buf, NULL)) { goto err; } dst = dst_buf; dst_len = md_size; } uint8_t dst_len_u8 = (uint8_t)dst_len; // Compute b_0. static const uint8_t kZeros[EVP_MAX_MD_BLOCK_SIZE] = {0}; // If |out_len| exceeds 16 bits then |i| will wrap below causing an error to // be returned. This depends on the static assert above. uint8_t l_i_b_str_zero[3] = {out_len >> 8, out_len, 0}; uint8_t b_0[EVP_MAX_MD_SIZE]; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, kZeros, block_size) || !EVP_DigestUpdate(&ctx, msg, msg_len) || !EVP_DigestUpdate(&ctx, l_i_b_str_zero, sizeof(l_i_b_str_zero)) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || !EVP_DigestFinal_ex(&ctx, b_0, NULL)) { goto err; } uint8_t b_i[EVP_MAX_MD_SIZE]; uint8_t i = 1; while (out_len > 0) { if (i == 0) { // Input was too large. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } if (i > 1) { for (size_t j = 0; j < md_size; j++) { b_i[j] ^= b_0[j]; } } else { OPENSSL_memcpy(b_i, b_0, md_size); } if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, b_i, md_size) || !EVP_DigestUpdate(&ctx, &i, 1) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || !EVP_DigestFinal_ex(&ctx, b_i, NULL)) { goto err; } size_t todo = out_len >= md_size ? md_size : out_len; OPENSSL_memcpy(out, b_i, todo); out += todo; out_len -= todo; i++; } ret = 1; err: EVP_MD_CTX_cleanup(&ctx); return ret; } // num_bytes_to_derive determines the number of bytes to derive when hashing to // a number modulo |modulus|. See the hash_to_field operation defined in // section 5.2 of draft-irtf-cfrg-hash-to-curve-16. static int num_bytes_to_derive(size_t *out, const BIGNUM *modulus, unsigned k) { size_t bits = BN_num_bits(modulus); size_t L = (bits + k + 7) / 8; // We require 2^(8*L) < 2^(2*bits - 2) <= n^2 so to fit in bounds for // |felem_reduce| and |ec_scalar_reduce|. All defined hash-to-curve suites // define |k| to be well under this bound. (|k| is usually around half of // |p_bits|.) if (L * 8 >= 2 * bits - 2 || L > 2 * EC_MAX_BYTES) { assert(0); OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); return 0; } *out = L; return 1; } // big_endian_to_words decodes |in| as a big-endian integer and writes the // result to |out|. |num_words| must be large enough to contain the output. static void big_endian_to_words(BN_ULONG *out, size_t num_words, const uint8_t *in, size_t len) { assert(len <= num_words * sizeof(BN_ULONG)); // Ensure any excess bytes are zeroed. OPENSSL_memset(out, 0, num_words * sizeof(BN_ULONG)); uint8_t *out_u8 = (uint8_t *)out; for (size_t i = 0; i < len; i++) { out_u8[len - 1 - i] = in[i]; } } // hash_to_field implements the operation described in section 5.2 // of draft-irtf-cfrg-hash-to-curve-16, with count = 2. |k| is the security // factor. static int hash_to_field2(const EC_GROUP *group, const EVP_MD *md, EC_FELEM *out1, EC_FELEM *out2, const uint8_t *dst, size_t dst_len, unsigned k, const uint8_t *msg, size_t msg_len) { size_t L; uint8_t buf[4 * EC_MAX_BYTES]; if (!num_bytes_to_derive(&L, &group->field.N, k) || !expand_message_xmd(md, buf, 2 * L, msg, msg_len, dst, dst_len)) { return 0; } BN_ULONG words[2 * EC_MAX_WORDS]; size_t num_words = 2 * group->field.N.width; big_endian_to_words(words, num_words, buf, L); group->meth->felem_reduce(group, out1, words, num_words); big_endian_to_words(words, num_words, buf + L, L); group->meth->felem_reduce(group, out2, words, num_words); return 1; } // hash_to_scalar behaves like |hash_to_field2| but returns a value modulo the // group order rather than a field element. |k| is the security factor. static int hash_to_scalar(const EC_GROUP *group, const EVP_MD *md, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, unsigned k, const uint8_t *msg, size_t msg_len) { const BIGNUM *order = EC_GROUP_get0_order(group); size_t L; uint8_t buf[EC_MAX_BYTES * 2]; if (!num_bytes_to_derive(&L, order, k) || !expand_message_xmd(md, buf, L, msg, msg_len, dst, dst_len)) { return 0; } BN_ULONG words[2 * EC_MAX_WORDS]; size_t num_words = 2 * order->width; big_endian_to_words(words, num_words, buf, L); ec_scalar_reduce(group, out, words, num_words); return 1; } static inline void mul_A(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *in) { assert(group->a_is_minus3); EC_FELEM tmp; ec_felem_add(group, &tmp, in, in); // tmp = 2*in ec_felem_add(group, &tmp, &tmp, &tmp); // tmp = 4*in ec_felem_sub(group, out, in, &tmp); // out = -3*in } // sgn0 implements the operation described in section 4.1.2 of // draft-irtf-cfrg-hash-to-curve-16. static BN_ULONG sgn0(const EC_GROUP *group, const EC_FELEM *a) { uint8_t buf[EC_MAX_BYTES]; size_t len; ec_felem_to_bytes(group, buf, &len, a); return buf[len - 1] & 1; } OPENSSL_UNUSED static int is_3mod4(const EC_GROUP *group) { return group->field.N.width > 0 && (group->field.N.d[0] & 3) == 3; } // sqrt_ratio_3mod4 implements the operation described in appendix F.2.1.2 // of draft-irtf-cfrg-hash-to-curve-16. static BN_ULONG sqrt_ratio_3mod4(const EC_GROUP *group, const EC_FELEM *Z, const BN_ULONG *c1, size_t num_c1, const EC_FELEM *c2, EC_FELEM *out_y, const EC_FELEM *u, const EC_FELEM *v) { assert(is_3mod4(group)); void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; EC_FELEM tv1, tv2, tv3, y1, y2; felem_sqr(group, &tv1, v); // 1. tv1 = v^2 felem_mul(group, &tv2, u, v); // 2. tv2 = u * v felem_mul(group, &tv1, &tv1, &tv2); // 3. tv1 = tv1 * tv2 group->meth->felem_exp(group, &y1, &tv1, c1, num_c1); // 4. y1 = tv1^c1 felem_mul(group, &y1, &y1, &tv2); // 5. y1 = y1 * tv2 felem_mul(group, &y2, &y1, c2); // 6. y2 = y1 * c2 felem_sqr(group, &tv3, &y1); // 7. tv3 = y1^2 felem_mul(group, &tv3, &tv3, v); // 8. tv3 = tv3 * v // 9. isQR = tv3 == u // 10. y = CMOV(y2, y1, isQR) // 11. return (isQR, y) // // Note the specification's CMOV function and our |ec_felem_select| have the // opposite argument order. ec_felem_sub(group, &tv1, &tv3, u); const BN_ULONG isQR = ~ec_felem_non_zero_mask(group, &tv1); ec_felem_select(group, out_y, isQR, &y1, &y2); return isQR; } // map_to_curve_simple_swu implements the operation described in section 6.6.2 // of draft-irtf-cfrg-hash-to-curve-16, using the straight-line implementation // in appendix F.2. static void map_to_curve_simple_swu(const EC_GROUP *group, const EC_FELEM *Z, const BN_ULONG *c1, size_t num_c1, const EC_FELEM *c2, EC_JACOBIAN *out, const EC_FELEM *u) { // This function requires the prime be 3 mod 4, and that A = -3. assert(is_3mod4(group)); assert(group->a_is_minus3); void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; EC_FELEM tv1, tv2, tv3, tv4, tv5, tv6, x, y, y1; felem_sqr(group, &tv1, u); // 1. tv1 = u^2 felem_mul(group, &tv1, Z, &tv1); // 2. tv1 = Z * tv1 felem_sqr(group, &tv2, &tv1); // 3. tv2 = tv1^2 ec_felem_add(group, &tv2, &tv2, &tv1); // 4. tv2 = tv2 + tv1 ec_felem_add(group, &tv3, &tv2, ec_felem_one(group)); // 5. tv3 = tv2 + 1 felem_mul(group, &tv3, &group->b, &tv3); // 6. tv3 = B * tv3 // 7. tv4 = CMOV(Z, -tv2, tv2 != 0) const BN_ULONG tv2_non_zero = ec_felem_non_zero_mask(group, &tv2); ec_felem_neg(group, &tv4, &tv2); ec_felem_select(group, &tv4, tv2_non_zero, &tv4, Z); mul_A(group, &tv4, &tv4); // 8. tv4 = A * tv4 felem_sqr(group, &tv2, &tv3); // 9. tv2 = tv3^2 felem_sqr(group, &tv6, &tv4); // 10. tv6 = tv4^2 mul_A(group, &tv5, &tv6); // 11. tv5 = A * tv6 ec_felem_add(group, &tv2, &tv2, &tv5); // 12. tv2 = tv2 + tv5 felem_mul(group, &tv2, &tv2, &tv3); // 13. tv2 = tv2 * tv3 felem_mul(group, &tv6, &tv6, &tv4); // 14. tv6 = tv6 * tv4 felem_mul(group, &tv5, &group->b, &tv6); // 15. tv5 = B * tv6 ec_felem_add(group, &tv2, &tv2, &tv5); // 16. tv2 = tv2 + tv5 felem_mul(group, &x, &tv1, &tv3); // 17. x = tv1 * tv3 // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6) const BN_ULONG is_gx1_square = sqrt_ratio_3mod4(group, Z, c1, num_c1, c2, &y1, &tv2, &tv6); felem_mul(group, &y, &tv1, u); // 19. y = tv1 * u felem_mul(group, &y, &y, &y1); // 20. y = y * y1 // 21. x = CMOV(x, tv3, is_gx1_square) ec_felem_select(group, &x, is_gx1_square, &tv3, &x); // 22. y = CMOV(y, y1, is_gx1_square) ec_felem_select(group, &y, is_gx1_square, &y1, &y); // 23. e1 = sgn0(u) == sgn0(y) BN_ULONG sgn0_u = sgn0(group, u); BN_ULONG sgn0_y = sgn0(group, &y); BN_ULONG not_e1 = sgn0_u ^ sgn0_y; not_e1 = ((BN_ULONG)0) - not_e1; // 24. y = CMOV(-y, y, e1) ec_felem_neg(group, &tv1, &y); ec_felem_select(group, &y, not_e1, &tv1, &y); // 25. x = x / tv4 // // Our output is in projective coordinates, so rather than inverting |tv4| // now, represent (x / tv4, y) as (x * tv4, y * tv4^3, tv4). This is much more // efficient if the caller will do further computation on the output. (If the // caller will immediately convert to affine coordinates, it is slightly less // efficient, but only by a few field multiplications.) felem_mul(group, &out->X, &x, &tv4); felem_mul(group, &out->Y, &y, &tv6); out->Z = tv4; } static int hash_to_curve(const EC_GROUP *group, const EVP_MD *md, const EC_FELEM *Z, const EC_FELEM *c2, unsigned k, EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { EC_FELEM u0, u1; if (!hash_to_field2(group, md, &u0, &u1, dst, dst_len, k, msg, msg_len)) { return 0; } // Compute |c1| = (p - 3) / 4. BN_ULONG c1[EC_MAX_WORDS]; size_t num_c1 = group->field.N.width; if (!bn_copy_words(c1, num_c1, &group->field.N)) { return 0; } bn_rshift_words(c1, c1, /*shift=*/2, /*num=*/num_c1); EC_JACOBIAN Q0, Q1; map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q0, &u0); map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q1, &u1); group->meth->add(group, out, &Q0, &Q1); // R = Q0 + Q1 // All our curves have cofactor one, so |clear_cofactor| is a no-op. return 1; } static int felem_from_u8(const EC_GROUP *group, EC_FELEM *out, uint8_t a) { uint8_t bytes[EC_MAX_BYTES] = {0}; size_t len = BN_num_bytes(&group->field.N); bytes[len - 1] = a; return ec_felem_from_bytes(group, out, bytes, len); } // kP256Sqrt10 is sqrt(10) in P-256's field. It was computed as follows in // python3: // // p = 2**256 - 2**224 + 2**192 + 2**96 - 1 // c2 = pow(10, (p+1)//4, p) // assert pow(c2, 2, p) == 10 // ", ".join("0x%02x" % b for b in c2.to_bytes(256//8, 'big')) static const uint8_t kP256Sqrt10[] = { 0xda, 0x53, 0x8e, 0x3b, 0xe1, 0xd8, 0x9b, 0x99, 0xc9, 0x78, 0xfc, 0x67, 0x51, 0x80, 0xaa, 0xb2, 0x7b, 0x8d, 0x1f, 0xf8, 0x4c, 0x55, 0xd5, 0xb6, 0x2c, 0xcd, 0x34, 0x27, 0xe4, 0x33, 0xc4, 0x7f}; // kP384Sqrt12 is sqrt(12) in P-384's field. It was computed as follows in // python3: // // p = 2**384 - 2**128 - 2**96 + 2**32 - 1 // c2 = pow(12, (p+1)//4, p) // assert pow(c2, 2, p) == 12 // ", ".join("0x%02x" % b for b in c2.to_bytes(384//8, 'big')) static const uint8_t kP384Sqrt12[] = { 0x2a, 0xcc, 0xb4, 0xa6, 0x56, 0xb0, 0x24, 0x9c, 0x71, 0xf0, 0x50, 0x0e, 0x83, 0xda, 0x2f, 0xdd, 0x7f, 0x98, 0xe3, 0x83, 0xd6, 0x8b, 0x53, 0x87, 0x1f, 0x87, 0x2f, 0xcb, 0x9c, 0xcb, 0x80, 0xc5, 0x3c, 0x0d, 0xe1, 0xf8, 0xa8, 0x0f, 0x7e, 0x19, 0x14, 0xe2, 0xec, 0x69, 0xf5, 0xa6, 0x26, 0xb3}; int ec_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { // See section 8.3 of draft-irtf-cfrg-hash-to-curve-16. if (EC_GROUP_get_curve_name(group) != NID_X9_62_prime256v1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } // Z = -10, c2 = sqrt(10) EC_FELEM Z, c2; if (!felem_from_u8(group, &Z, 10) || !ec_felem_from_bytes(group, &c2, kP256Sqrt10, sizeof(kP256Sqrt10))) { return 0; } ec_felem_neg(group, &Z, &Z); return hash_to_curve(group, EVP_sha256(), &Z, &c2, /*k=*/128, out, dst, dst_len, msg, msg_len); } int EC_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group, EC_POINT *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { if (EC_GROUP_cmp(group, out->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return ec_hash_to_curve_p256_xmd_sha256_sswu(group, &out->raw, dst, dst_len, msg, msg_len); } int ec_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { // See section 8.3 of draft-irtf-cfrg-hash-to-curve-16. if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } // Z = -12, c2 = sqrt(12) EC_FELEM Z, c2; if (!felem_from_u8(group, &Z, 12) || !ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) { return 0; } ec_felem_neg(group, &Z, &Z); return hash_to_curve(group, EVP_sha384(), &Z, &c2, /*k=*/192, out, dst, dst_len, msg, msg_len); } int EC_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group, EC_POINT *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { if (EC_GROUP_cmp(group, out->group, NULL) != 0) { OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return ec_hash_to_curve_p384_xmd_sha384_sswu(group, &out->raw, dst, dst_len, msg, msg_len); } int ec_hash_to_scalar_p384_xmd_sha384( const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } return hash_to_scalar(group, EVP_sha384(), out, dst, dst_len, /*k=*/192, msg, msg_len); } int ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { // See section 8.3 of draft-irtf-cfrg-hash-to-curve-07. if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } // Z = -12, c2 = sqrt(12) EC_FELEM Z, c2; if (!felem_from_u8(group, &Z, 12) || !ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) { return 0; } ec_felem_neg(group, &Z, &Z); return hash_to_curve(group, EVP_sha512(), &Z, &c2, /*k=*/192, out, dst, dst_len, msg, msg_len); } int ec_hash_to_scalar_p384_xmd_sha512_draft07( const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } return hash_to_scalar(group, EVP_sha512(), out, dst, dst_len, /*k=*/192, msg, msg_len); }