#include "extend.hpp" #include "context.hpp" #include "contextualize.hpp" #include "to_string.hpp" #include "backtrace.hpp" #include "paths.hpp" #include "parser.hpp" #ifndef SASS_AST #include "node.hpp" #endif #include "sass_util.hpp" #include "debug.hpp" #include #include /* NOTES: - The print* functions print to cerr. This allows our testing frameworks (like sass-spec) to ignore the output, which is very helpful when debugging. The format of the output is mainly to wrap things in square brackets to match what ruby already outputs (to make comparisons easier). - For the direct porting effort, we're trying to port method-for-method until we get all the tests passing. Where applicable, I've tried to include the ruby code above the function for reference until all our tests pass. The ruby code isn't always directly portable, so I've tried to include any modified ruby code that was actually used for the porting. - DO NOT try to optimize yet. We get a tremendous benefit out of comparing the output of each stage of the extend to the ruby output at the same stage. This makes it much easier to determine where problems are. Try to keep as close to the ruby code as you can until we have all the sass-spec tests passing. Then, we should optimize. However, if you see something that could probably be optimized, let's not forget it. Add a // TODO: or // IMPROVEMENT: comment. - Coding conventions in this file (these may need to be changed before merging back into master) - Very basic hungarian notation: p prefix for pointers (pSelector) no prefix for value types and references (selector) - Use STL iterators where possible - prefer verbose naming over terse naming - use typedefs for STL container types for make maintenance easier - You may see a lot of comments that say "// TODO: is this the correct combinator?". See the comment referring to combinators in extendCompoundSelector for a more extensive explanation of my confusion. I think our divergence in data model from ruby sass causes this to be necessary. GLOBAL TODOS: - wrap the contents of the print functions in DEBUG preprocesser conditionals so they will be optimized away in non-debug mode. - consider making the extend* functions member functions to avoid passing around ctx and subsetMap map around. This has the drawback that the implementation details of the operator are then exposed to the outside world, which is not ideal and can cause additional compile time dependencies. - mark the helper methods in this file static to given them compilation unit linkage. - implement parent directive matching - fix compilation warnings for unused Extend members if we really don't need those references anymore. */ namespace Sass { typedef pair ExtensionPair; typedef vector SubsetMapEntries; #ifdef DEBUG // TODO: move the ast specific ostream operators into ast.hpp/ast.cpp ostream& operator<<(ostream& os, const Complex_Selector::Combinator combinator) { switch (combinator) { case Complex_Selector::ANCESTOR_OF: os << "\" \""; break; case Complex_Selector::PARENT_OF: os << "\">\""; break; case Complex_Selector::PRECEDES: os << "\"~\""; break; case Complex_Selector::ADJACENT_TO: os << "\"+\""; break; } return os; } ostream& operator<<(ostream& os, Compound_Selector& compoundSelector) { To_String to_string; os << compoundSelector.perform(&to_string); return os; } // Print a string representation of a Compound_Selector static void printCompoundSelector(Compound_Selector* pCompoundSelector, const char* message=NULL, bool newline=true) { To_String to_string; if (message) { cerr << message; } if (pCompoundSelector) { cerr << *pCompoundSelector; } else { cerr << "NULL"; } if (newline) { cerr << endl; } } ostream& operator<<(ostream& os, Complex_Selector& complexSelector) { To_String to_string; os << "["; Complex_Selector* pIter = &complexSelector; bool first = true; while (pIter) { if (pIter->combinator() != Complex_Selector::ANCESTOR_OF) { if (!first) { os << ", "; } first = false; os << pIter->combinator(); } if (!first) { os << ", "; } first = false; if (pIter->head()) { os << pIter->head()->perform(&to_string); } else { os << "NULL_HEAD"; } pIter = pIter->tail(); } os << "]"; return os; } // Print a string representation of a Complex_Selector static void printComplexSelector(Complex_Selector* pComplexSelector, const char* message=NULL, bool newline=true) { To_String to_string; if (message) { cerr << message; } if (pComplexSelector) { cerr << *pComplexSelector; } else { cerr << "NULL"; } if (newline) { cerr << endl; } } // Print a string representation of a SourcesSet static void printSourcesSet(SourcesSet& sources, Context& ctx, const char* message=NULL, bool newline=true) { To_String to_string; if (message) { cerr << message; } // Convert to a deque of strings so we can sort since order doesn't matter in a set. This should cut down on // the differences we see when debug printing. typedef deque SourceStrings; SourceStrings sourceStrings; for (SourcesSet::iterator iterator = sources.begin(), iteratorEnd = sources.end(); iterator != iteratorEnd; ++iterator) { Complex_Selector* pSource = *iterator; stringstream sstream; sstream << complexSelectorToNode(pSource, ctx); sourceStrings.push_back(sstream.str()); } // Sort to get consistent output std::sort(sourceStrings.begin(), sourceStrings.end()); cerr << "SourcesSet["; for (SourceStrings::iterator iterator = sourceStrings.begin(), iteratorEnd = sourceStrings.end(); iterator != iteratorEnd; ++iterator) { string source = *iterator; if (iterator != sourceStrings.begin()) { cerr << ", "; } cerr << source; } cerr << "]"; if (newline) { cerr << endl; } } ostream& operator<<(ostream& os, SubsetMapEntries& entries) { os << "SUBSET_MAP_ENTRIES["; for (SubsetMapEntries::iterator iterator = entries.begin(), endIterator = entries.end(); iterator != endIterator; ++iterator) { Complex_Selector* pExtComplexSelector = iterator->first; // The selector up to where the @extend is (ie, the thing to merge) Compound_Selector* pExtCompoundSelector = iterator->second; // The stuff after the @extend if (iterator != entries.begin()) { os << ", "; } os << "("; if (pExtComplexSelector) { cerr << *pExtComplexSelector; } else { cerr << "NULL"; } os << " -> "; if (pExtCompoundSelector) { cerr << *pExtCompoundSelector; } else { cerr << "NULL"; } os << ")"; } os << "]"; return os; } #endif static bool parentSuperselector(Complex_Selector* pOne, Complex_Selector* pTwo, Context& ctx) { // TODO: figure out a better way to create a Complex_Selector from scratch // TODO: There's got to be a better way. This got ugly quick... Position noPosition; Type_Selector fakeParent("", noPosition, "temp"); Compound_Selector fakeHead("", noPosition, 1 /*size*/); fakeHead.elements().push_back(&fakeParent); Complex_Selector fakeParentContainer("", noPosition, Complex_Selector::ANCESTOR_OF, &fakeHead /*head*/, NULL /*tail*/); pOne->set_innermost(&fakeParentContainer, Complex_Selector::ANCESTOR_OF); pTwo->set_innermost(&fakeParentContainer, Complex_Selector::ANCESTOR_OF); bool isSuperselector = pOne->is_superselector_of(pTwo); pOne->clear_innermost(); pTwo->clear_innermost(); return isSuperselector; } void nodeToComplexSelectorDeque(const Node& node, ComplexSelectorDeque& out, Context& ctx) { for (NodeDeque::iterator iter = node.collection()->begin(), iterEnd = node.collection()->end(); iter != iterEnd; iter++) { Node& child = *iter; out.push_back(nodeToComplexSelector(child, ctx)); } } Node complexSelectorDequeToNode(const ComplexSelectorDeque& deque, Context& ctx) { Node result = Node::createCollection(); for (ComplexSelectorDeque::const_iterator iter = deque.begin(), iterEnd = deque.end(); iter != iterEnd; iter++) { Complex_Selector* pChild = *iter; result.collection()->push_back(complexSelectorToNode(pChild, ctx)); } return result; } class LcsCollectionComparator { public: LcsCollectionComparator(Context& ctx) : mCtx(ctx) {} Context& mCtx; bool operator()(Complex_Selector* pOne, Complex_Selector* pTwo, Complex_Selector*& pOut) const { /* This code is based on the following block from ruby sass' subweave do |s1, s2| next s1 if s1 == s2 next unless s1.first.is_a?(SimpleSequence) && s2.first.is_a?(SimpleSequence) next s2 if parent_superselector?(s1, s2) next s1 if parent_superselector?(s2, s1) end */ if (selectors_equal(*pOne, *pTwo, true /*simpleSelectorOrderDependent*/)) { pOut = pOne; return true; } if (pOne->combinator() != Complex_Selector::ANCESTOR_OF || pTwo->combinator() != Complex_Selector::ANCESTOR_OF) { return false; } if (parentSuperselector(pOne, pTwo, mCtx)) { pOut = pTwo; return true; } if (parentSuperselector(pTwo, pOne, mCtx)) { pOut = pOne; return true; } return false; } }; /* This is the equivalent of ruby's Sass::Util.lcs_backtrace. # Computes a single longest common subsequence for arrays x and y. # Algorithm from http://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Reading_out_an_LCS */ void lcs_backtrace(const LCSTable& c, ComplexSelectorDeque& x, ComplexSelectorDeque& y, int i, int j, const LcsCollectionComparator& comparator, ComplexSelectorDeque& out) { //DEBUG_PRINTLN(LCS, "LCSBACK: X=" << x << " Y=" << y << " I=" << i << " J=" << j) // TODO: make printComplexSelectorDeque and use DEBUG_EXEC AND DEBUG_PRINTLN HERE to get equivalent output if (i == 0 || j == 0) { DEBUG_PRINTLN(LCS, "RETURNING EMPTY") return; } Complex_Selector* pCompareOut = NULL; if (comparator(x[i], y[j], pCompareOut)) { DEBUG_PRINTLN(LCS, "RETURNING AFTER ELEM COMPARE") lcs_backtrace(c, x, y, i - 1, j - 1, comparator, out); out.push_back(pCompareOut); return; } if (c[i][j - 1] > c[i - 1][j]) { DEBUG_PRINTLN(LCS, "RETURNING AFTER TABLE COMPARE") lcs_backtrace(c, x, y, i, j - 1, comparator, out); return; } DEBUG_PRINTLN(LCS, "FINAL RETURN") lcs_backtrace(c, x, y, i - 1, j, comparator, out); return; } /* This is the equivalent of ruby's Sass::Util.lcs_table. # Calculates the memoization table for the Least Common Subsequence algorithm. # Algorithm from http://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Computing_the_length_of_the_LCS */ void lcs_table(const ComplexSelectorDeque& x, const ComplexSelectorDeque& y, const LcsCollectionComparator& comparator, LCSTable& out) { //DEBUG_PRINTLN(LCS, "LCSTABLE: X=" << x << " Y=" << y) // TODO: make printComplexSelectorDeque and use DEBUG_EXEC AND DEBUG_PRINTLN HERE to get equivalent output LCSTable c(x.size(), vector(y.size())); // These shouldn't be necessary since the vector will be initialized to 0 already. // x.size.times {|i| c[i][0] = 0} // y.size.times {|j| c[0][j] = 0} for (size_t i = 1; i < x.size(); i++) { for (size_t j = 1; j < y.size(); j++) { Complex_Selector* pCompareOut = NULL; if (comparator(x[i], y[j], pCompareOut)) { c[i][j] = c[i - 1][j - 1] + 1; } else { c[i][j] = max(c[i][j - 1], c[i - 1][j]); } } } out = c; } /* This is the equivalent of ruby's Sass::Util.lcs. # Computes a single longest common subsequence for `x` and `y`. # If there are more than one longest common subsequences, # the one returned is that which starts first in `x`. # @param x [NodeCollection] # @param y [NodeCollection] # @comparator An equality check between elements of `x` and `y`. # @return [NodeCollection] The LCS http://en.wikipedia.org/wiki/Longest_common_subsequence_problem */ void lcs(ComplexSelectorDeque& x, ComplexSelectorDeque& y, const LcsCollectionComparator& comparator, Context& ctx, ComplexSelectorDeque& out) { //DEBUG_PRINTLN(LCS, "LCS: X=" << x << " Y=" << y) // TODO: make printComplexSelectorDeque and use DEBUG_EXEC AND DEBUG_PRINTLN HERE to get equivalent output x.push_front(NULL); y.push_front(NULL); LCSTable table; lcs_table(x, y, comparator, table); return lcs_backtrace(table, x, y, static_cast(x.size()) - 1, static_cast(y.size()) - 1, comparator, out); } /* This is the equivalent of ruby's Sequence.trim. The following is the modified version of the ruby code that was more portable to C++. You should be able to drop it into ruby 3.2.19 and get the same results from ruby sass. # Avoid truly horrific quadratic behavior. TODO: I think there # may be a way to get perfect trimming without going quadratic. return seqses if seqses.size > 100 # Keep the results in a separate array so we can be sure we aren't # comparing against an already-trimmed selector. This ensures that two # identical selectors don't mutually trim one another. result = seqses.dup # This is n^2 on the sequences, but only comparing between # separate sequences should limit the quadratic behavior. seqses.each_with_index do |seqs1, i| tempResult = [] for seq1 in seqs1 do max_spec = 0 for seq in _sources(seq1) do max_spec = [max_spec, seq.specificity].max end isMoreSpecificOuter = false for seqs2 in result do if seqs1.equal?(seqs2) then next end # Second Law of Extend: the specificity of a generated selector # should never be less than the specificity of the extending # selector. # # See https://github.com/nex3/sass/issues/324. isMoreSpecificInner = false for seq2 in seqs2 do isMoreSpecificInner = _specificity(seq2) >= max_spec && _superselector?(seq2, seq1) if isMoreSpecificInner then break end end if isMoreSpecificInner then isMoreSpecificOuter = true break end end if !isMoreSpecificOuter then tempResult.push(seq1) end end result[i] = tempResult end result */ /* - IMPROVEMENT: We could probably work directly in the output trimmed deque. */ static Node trim(Node& seqses, Context& ctx) { // See the comments in the above ruby code before embarking on understanding this function. // Avoid poor performance in extreme cases. if (seqses.collection()->size() > 100) { return seqses; } DEBUG_PRINTLN(TRIM, "TRIM: " << seqses) Node result = Node::createCollection(); result.plus(seqses); DEBUG_PRINTLN(TRIM, "RESULT INITIAL: " << result) // Normally we use the standard STL iterators, but in this case, we need to access the result collection by index since we're // iterating the input collection, computing a value, and then setting the result in the output collection. We have to keep track // of the index manually. int toTrimIndex = 0; for (NodeDeque::iterator seqsesIter = seqses.collection()->begin(), seqsesIterEnd = seqses.collection()->end(); seqsesIter != seqsesIterEnd; ++seqsesIter) { Node& seqs1 = *seqsesIter; DEBUG_PRINTLN(TRIM, "SEQS1: " << seqs1 << " " << toTrimIndex) Node tempResult = Node::createCollection(); for (NodeDeque::iterator seqs1Iter = seqs1.collection()->begin(), seqs1EndIter = seqs1.collection()->end(); seqs1Iter != seqs1EndIter; ++seqs1Iter) { Node& seq1 = *seqs1Iter; Complex_Selector* pSeq1 = nodeToComplexSelector(seq1, ctx); // Compute the maximum specificity. This requires looking at the "sources" of the sequence. See SimpleSequence.sources in the ruby code // for a good description of sources. // // TODO: I'm pretty sure there's a bug in the sources code. It was implemented for sass-spec's 182_test_nested_extend_loop test. // While the test passes, I compared the state of each trim call to verify correctness. The last trim call had incorrect sources. We // had an extra source that the ruby version did not have. Without a failing test case, this is going to be extra hard to find. My // best guess at this point is that we're cloning an object somewhere and maintaining the sources when we shouldn't be. This is purely // a guess though. int maxSpecificity = 0; SourcesSet sources = pSeq1->sources(); DEBUG_PRINTLN(TRIM, "TRIMASDF SEQ1: " << seq1) DEBUG_EXEC(TRIM, printSourcesSet(sources, ctx, "TRIMASDF SOURCES: ")) for (SourcesSet::iterator sourcesSetIterator = sources.begin(), sourcesSetIteratorEnd = sources.end(); sourcesSetIterator != sourcesSetIteratorEnd; ++sourcesSetIterator) { const Complex_Selector* const pCurrentSelector = *sourcesSetIterator; maxSpecificity = max(maxSpecificity, pCurrentSelector->specificity()); } DEBUG_PRINTLN(TRIM, "MAX SPECIFICITY: " << maxSpecificity) bool isMoreSpecificOuter = false; int resultIndex = 0; for (NodeDeque::iterator resultIter = result.collection()->begin(), resultIterEnd = result.collection()->end(); resultIter != resultIterEnd; ++resultIter) { Node& seqs2 = *resultIter; DEBUG_PRINTLN(TRIM, "SEQS1: " << seqs1) DEBUG_PRINTLN(TRIM, "SEQS2: " << seqs2) // Do not compare the same sequence to itself. The ruby call we're trying to // emulate is: seqs1.equal?(seqs2). equal? is an object comparison, not an equivalency comparision. // Since we have the same pointers in seqes and results, we can do a pointer comparision. seqs1 is // derived from seqses and seqs2 is derived from result. if (seqs1.collection() == seqs2.collection()) { DEBUG_PRINTLN(TRIM, "CONTINUE") continue; } bool isMoreSpecificInner = false; for (NodeDeque::iterator seqs2Iter = seqs2.collection()->begin(), seqs2IterEnd = seqs2.collection()->end(); seqs2Iter != seqs2IterEnd; ++seqs2Iter) { Node& seq2 = *seqs2Iter; Complex_Selector* pSeq2 = nodeToComplexSelector(seq2, ctx); DEBUG_PRINTLN(TRIM, "SEQ2 SPEC: " << pSeq2->specificity()) DEBUG_PRINTLN(TRIM, "IS SPEC: " << pSeq2->specificity() << " >= " << maxSpecificity << " " << (pSeq2->specificity() >= maxSpecificity ? "true" : "false")) DEBUG_PRINTLN(TRIM, "IS SUPER: " << (pSeq2->is_superselector_of(pSeq1) ? "true" : "false")) isMoreSpecificInner = pSeq2->specificity() >= maxSpecificity && pSeq2->is_superselector_of(pSeq1); if (isMoreSpecificInner) { DEBUG_PRINTLN(TRIM, "FOUND MORE SPECIFIC") break; } } // If we found something more specific, we're done. Let the outer loop know and stop iterating. if (isMoreSpecificInner) { isMoreSpecificOuter = true; break; } resultIndex++; } if (!isMoreSpecificOuter) { DEBUG_PRINTLN(TRIM, "PUSHING: " << seq1) tempResult.collection()->push_back(seq1); } } DEBUG_PRINTLN(TRIM, "RESULT BEFORE ASSIGN: " << result) DEBUG_PRINTLN(TRIM, "TEMP RESULT: " << toTrimIndex << " " << tempResult) (*result.collection())[toTrimIndex] = tempResult; toTrimIndex++; DEBUG_PRINTLN(TRIM, "RESULT: " << result) } return result; } static bool parentSuperselector(const Node& one, const Node& two, Context& ctx) { // TODO: figure out a better way to create a Complex_Selector from scratch // TODO: There's got to be a better way. This got ugly quick... Position noPosition; Type_Selector fakeParent("", noPosition, "temp"); Compound_Selector fakeHead("", noPosition, 1 /*size*/); fakeHead.elements().push_back(&fakeParent); Complex_Selector fakeParentContainer("", noPosition, Complex_Selector::ANCESTOR_OF, &fakeHead /*head*/, NULL /*tail*/); Complex_Selector* pOneWithFakeParent = nodeToComplexSelector(one, ctx); pOneWithFakeParent->set_innermost(&fakeParentContainer, Complex_Selector::ANCESTOR_OF); Complex_Selector* pTwoWithFakeParent = nodeToComplexSelector(two, ctx); pTwoWithFakeParent->set_innermost(&fakeParentContainer, Complex_Selector::ANCESTOR_OF); return pOneWithFakeParent->is_superselector_of(pTwoWithFakeParent); } class ParentSuperselectorChunker { public: ParentSuperselectorChunker(Node& lcs, Context& ctx) : mLcs(lcs), mCtx(ctx) {} Node& mLcs; Context& mCtx; bool operator()(const Node& seq) const { // {|s| parent_superselector?(s.first, lcs.first)} return parentSuperselector(seq.collection()->front(), mLcs.collection()->front(), mCtx); } }; class SubweaveEmptyChunker { public: bool operator()(const Node& seq) const { // {|s| s.empty?} return seq.collection()->empty(); } }; /* # Takes initial subsequences of `seq1` and `seq2` and returns all # orderings of those subsequences. The initial subsequences are determined # by a block. # # Destructively removes the initial subsequences of `seq1` and `seq2`. # # For example, given `(A B C | D E)` and `(1 2 | 3 4 5)` (with `|` # denoting the boundary of the initial subsequence), this would return # `[(A B C 1 2), (1 2 A B C)]`. The sequences would then be `(D E)` and # `(3 4 5)`. # # @param seq1 [Array] # @param seq2 [Array] # @yield [a] Used to determine when to cut off the initial subsequences. # Called repeatedly for each sequence until it returns true. # @yieldparam a [Array] A final subsequence of one input sequence after # cutting off some initial subsequence. # @yieldreturn [Boolean] Whether or not to cut off the initial subsequence # here. # @return [Array] All possible orderings of the initial subsequences. def chunks(seq1, seq2) chunk1 = [] chunk1 << seq1.shift until yield seq1 chunk2 = [] chunk2 << seq2.shift until yield seq2 return [] if chunk1.empty? && chunk2.empty? return [chunk2] if chunk1.empty? return [chunk1] if chunk2.empty? [chunk1 + chunk2, chunk2 + chunk1] end */ template static Node chunks(Node& seq1, Node& seq2, const ChunkerType& chunker) { Node chunk1 = Node::createCollection(); while (!chunker(seq1)) { chunk1.collection()->push_back(seq1.collection()->front()); seq1.collection()->pop_front(); } Node chunk2 = Node::createCollection(); while (!chunker(seq2)) { chunk2.collection()->push_back(seq2.collection()->front()); seq2.collection()->pop_front(); } if (chunk1.collection()->empty() && chunk2.collection()->empty()) { DEBUG_PRINTLN(CHUNKS, "RETURNING BOTH EMPTY") return Node::createCollection(); } if (chunk1.collection()->empty()) { Node chunk2Wrapper = Node::createCollection(); chunk2Wrapper.collection()->push_back(chunk2); DEBUG_PRINTLN(CHUNKS, "RETURNING ONE EMPTY") return chunk2Wrapper; } if (chunk2.collection()->empty()) { Node chunk1Wrapper = Node::createCollection(); chunk1Wrapper.collection()->push_back(chunk1); DEBUG_PRINTLN(CHUNKS, "RETURNING TWO EMPTY") return chunk1Wrapper; } Node perms = Node::createCollection(); Node firstPermutation = Node::createCollection(); firstPermutation.collection()->insert(firstPermutation.collection()->end(), chunk1.collection()->begin(), chunk1.collection()->end()); firstPermutation.collection()->insert(firstPermutation.collection()->end(), chunk2.collection()->begin(), chunk2.collection()->end()); perms.collection()->push_back(firstPermutation); Node secondPermutation = Node::createCollection(); secondPermutation.collection()->insert(secondPermutation.collection()->end(), chunk2.collection()->begin(), chunk2.collection()->end()); secondPermutation.collection()->insert(secondPermutation.collection()->end(), chunk1.collection()->begin(), chunk1.collection()->end()); perms.collection()->push_back(secondPermutation); DEBUG_PRINTLN(CHUNKS, "RETURNING PERM") return perms; } static Node groupSelectors(Node& seq, Context& ctx) { Node newSeq = Node::createCollection(); Node tail = Node::createCollection(); tail.plus(seq); while (!tail.collection()->empty()) { Node head = Node::createCollection(); do { head.collection()->push_back(tail.collection()->front()); tail.collection()->pop_front(); } while (!tail.collection()->empty() && (head.collection()->back().isCombinator() || tail.collection()->front().isCombinator())); newSeq.collection()->push_back(head); } return newSeq; } static void getAndRemoveInitialOps(Node& seq, Node& ops) { NodeDeque& seqCollection = *(seq.collection()); NodeDeque& opsCollection = *(ops.collection()); while (seqCollection.size() > 0 && seqCollection.front().isCombinator()) { opsCollection.push_back(seqCollection.front()); seqCollection.pop_front(); } } static void getAndRemoveFinalOps(Node& seq, Node& ops) { NodeDeque& seqCollection = *(seq.collection()); NodeDeque& opsCollection = *(ops.collection()); while (seqCollection.size() > 0 && seqCollection.back().isCombinator()) { opsCollection.push_back(seqCollection.back()); // Purposefully reversed to match ruby code seqCollection.pop_back(); } } /* def merge_initial_ops(seq1, seq2) ops1, ops2 = [], [] ops1 << seq1.shift while seq1.first.is_a?(String) ops2 << seq2.shift while seq2.first.is_a?(String) newline = false newline ||= !!ops1.shift if ops1.first == "\n" newline ||= !!ops2.shift if ops2.first == "\n" # If neither sequence is a subsequence of the other, they cannot be # merged successfully lcs = Sass::Util.lcs(ops1, ops2) return unless lcs == ops1 || lcs == ops2 return (newline ? ["\n"] : []) + (ops1.size > ops2.size ? ops1 : ops2) end */ static Node mergeInitialOps(Node& seq1, Node& seq2, Context& ctx) { Node ops1 = Node::createCollection(); Node ops2 = Node::createCollection(); getAndRemoveInitialOps(seq1, ops1); getAndRemoveInitialOps(seq2, ops2); // TODO: Do we have this information available to us? // newline = false // newline ||= !!ops1.shift if ops1.first == "\n" // newline ||= !!ops2.shift if ops2.first == "\n" // If neither sequence is a subsequence of the other, they cannot be merged successfully DefaultLcsComparator lcsDefaultComparator; Node opsLcs = lcs(ops1, ops2, lcsDefaultComparator, ctx); if (!(opsLcs == ops1 || opsLcs == ops2)) { return Node::createNil(); } // TODO: more newline logic // return (newline ? ["\n"] : []) + (ops1.size > ops2.size ? ops1 : ops2) return (ops1.collection()->size() > ops2.collection()->size() ? ops1 : ops2); } /* def merge_final_ops(seq1, seq2, res = []) # This code looks complicated, but it's actually just a bunch of special # cases for interactions between different combinators. op1, op2 = ops1.first, ops2.first if op1 && op2 sel1 = seq1.pop sel2 = seq2.pop if op1 == '~' && op2 == '~' if sel1.superselector?(sel2) res.unshift sel2, '~' elsif sel2.superselector?(sel1) res.unshift sel1, '~' else merged = sel1.unify(sel2.members, sel2.subject?) res.unshift [ [sel1, '~', sel2, '~'], [sel2, '~', sel1, '~'], ([merged, '~'] if merged) ].compact end elsif (op1 == '~' && op2 == '+') || (op1 == '+' && op2 == '~') if op1 == '~' tilde_sel, plus_sel = sel1, sel2 else tilde_sel, plus_sel = sel2, sel1 end if tilde_sel.superselector?(plus_sel) res.unshift plus_sel, '+' else merged = plus_sel.unify(tilde_sel.members, tilde_sel.subject?) res.unshift [ [tilde_sel, '~', plus_sel, '+'], ([merged, '+'] if merged) ].compact end elsif op1 == '>' && %w[~ +].include?(op2) res.unshift sel2, op2 seq1.push sel1, op1 elsif op2 == '>' && %w[~ +].include?(op1) res.unshift sel1, op1 seq2.push sel2, op2 elsif op1 == op2 return unless merged = sel1.unify(sel2.members, sel2.subject?) res.unshift merged, op1 else # Unknown selector combinators can't be unified return end return merge_final_ops(seq1, seq2, res) elsif op1 seq2.pop if op1 == '>' && seq2.last && seq2.last.superselector?(seq1.last) res.unshift seq1.pop, op1 return merge_final_ops(seq1, seq2, res) else # op2 seq1.pop if op2 == '>' && seq1.last && seq1.last.superselector?(seq2.last) res.unshift seq2.pop, op2 return merge_final_ops(seq1, seq2, res) end end */ static Node mergeFinalOps(Node& seq1, Node& seq2, Context& ctx, Node& res) { Node ops1 = Node::createCollection(); Node ops2 = Node::createCollection(); getAndRemoveFinalOps(seq1, ops1); getAndRemoveFinalOps(seq2, ops2); // TODO: do we have newlines to remove? // ops1.reject! {|o| o == "\n"} // ops2.reject! {|o| o == "\n"} if (ops1.collection()->empty() && ops2.collection()->empty()) { return res; } if (ops1.collection()->size() > 1 || ops2.collection()->size() > 1) { DefaultLcsComparator lcsDefaultComparator; Node opsLcs = lcs(ops1, ops2, lcsDefaultComparator, ctx); // If there are multiple operators, something hacky's going on. If one is a supersequence of the other, use that, otherwise give up. if (!(opsLcs == ops1 || opsLcs == ops2)) { return Node::createNil(); } if (ops1.collection()->size() > ops2.collection()->size()) { res.collection()->insert(res.collection()->begin(), ops1.collection()->rbegin(), ops1.collection()->rend()); } else { res.collection()->insert(res.collection()->begin(), ops2.collection()->rbegin(), ops2.collection()->rend()); } return res; } if (!ops1.collection()->empty() && !ops2.collection()->empty()) { Node op1 = ops1.collection()->front(); Node op2 = ops2.collection()->front(); Node sel1 = seq1.collection()->back(); seq1.collection()->pop_back(); Node sel2 = seq2.collection()->back(); seq2.collection()->pop_back(); if (op1.combinator() == Complex_Selector::PRECEDES && op2.combinator() == Complex_Selector::PRECEDES) { if (sel1.selector()->is_superselector_of(sel2.selector())) { res.collection()->push_front(op1 /*PRECEDES - could have been op2 as well*/); res.collection()->push_front(sel2); } else if (sel2.selector()->is_superselector_of(sel1.selector())) { res.collection()->push_front(op1 /*PRECEDES - could have been op2 as well*/); res.collection()->push_front(sel1); } else { DEBUG_PRINTLN(ALL, "sel1: " << sel1) DEBUG_PRINTLN(ALL, "sel2: " << sel2) Complex_Selector* pMergedWrapper = sel1.selector()->clone(ctx); // Clone the Complex_Selector to get back to something we can transform to a node once we replace the head with the unification result // TODO: does subject matter? Ruby: return unless merged = sel1.unify(sel2.members, sel2.subject?) Compound_Selector* pMerged = sel1.selector()->head()->unify_with(sel2.selector()->head(), ctx); pMergedWrapper->head(pMerged); DEBUG_EXEC(ALL, printCompoundSelector(pMerged, "MERGED: ")) Node newRes = Node::createCollection(); Node firstPerm = Node::createCollection(); firstPerm.collection()->push_back(sel1); firstPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); firstPerm.collection()->push_back(sel2); firstPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); newRes.collection()->push_back(firstPerm); Node secondPerm = Node::createCollection(); secondPerm.collection()->push_back(sel2); secondPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); secondPerm.collection()->push_back(sel1); secondPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); newRes.collection()->push_back(secondPerm); if (pMerged) { Node mergedPerm = Node::createCollection(); mergedPerm.collection()->push_back(Node::createSelector(pMergedWrapper, ctx)); mergedPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); newRes.collection()->push_back(mergedPerm); } res.collection()->push_front(newRes); DEBUG_PRINTLN(ALL, "RESULT: " << res) } } else if (((op1.combinator() == Complex_Selector::PRECEDES && op2.combinator() == Complex_Selector::ADJACENT_TO)) || ((op1.combinator() == Complex_Selector::ADJACENT_TO && op2.combinator() == Complex_Selector::PRECEDES))) { Node tildeSel = sel1; Node tildeOp = op1; Node plusSel = sel2; Node plusOp = op2; if (op1.combinator() != Complex_Selector::PRECEDES) { tildeSel = sel2; tildeOp = op2; plusSel = sel1; plusOp = op1; } if (tildeSel.selector()->is_superselector_of(plusSel.selector())) { res.collection()->push_front(plusOp); res.collection()->push_front(plusSel); } else { DEBUG_PRINTLN(ALL, "PLUS SEL: " << plusSel) DEBUG_PRINTLN(ALL, "TILDE SEL: " << tildeSel) Complex_Selector* pMergedWrapper = plusSel.selector()->clone(ctx); // Clone the Complex_Selector to get back to something we can transform to a node once we replace the head with the unification result // TODO: does subject matter? Ruby: merged = plus_sel.unify(tilde_sel.members, tilde_sel.subject?) Compound_Selector* pMerged = plusSel.selector()->head()->unify_with(tildeSel.selector()->head(), ctx); pMergedWrapper->head(pMerged); DEBUG_EXEC(ALL, printCompoundSelector(pMerged, "MERGED: ")) Node newRes = Node::createCollection(); Node firstPerm = Node::createCollection(); firstPerm.collection()->push_back(tildeSel); firstPerm.collection()->push_back(Node::createCombinator(Complex_Selector::PRECEDES)); firstPerm.collection()->push_back(plusSel); firstPerm.collection()->push_back(Node::createCombinator(Complex_Selector::ADJACENT_TO)); newRes.collection()->push_back(firstPerm); if (pMerged) { Node mergedPerm = Node::createCollection(); mergedPerm.collection()->push_back(Node::createSelector(pMergedWrapper, ctx)); mergedPerm.collection()->push_back(Node::createCombinator(Complex_Selector::ADJACENT_TO)); newRes.collection()->push_back(mergedPerm); } res.collection()->push_front(newRes); DEBUG_PRINTLN(ALL, "RESULT: " << res) } } else if (op1.combinator() == Complex_Selector::PARENT_OF && (op2.combinator() == Complex_Selector::PRECEDES || op2.combinator() == Complex_Selector::ADJACENT_TO)) { res.collection()->push_front(op2); res.collection()->push_front(sel2); seq2.collection()->push_back(sel1); seq2.collection()->push_back(op1); } else if (op2.combinator() == Complex_Selector::PARENT_OF && (op1.combinator() == Complex_Selector::PRECEDES || op1.combinator() == Complex_Selector::ADJACENT_TO)) { res.collection()->push_front(op1); res.collection()->push_front(sel1); seq2.collection()->push_back(sel2); seq2.collection()->push_back(op2); } else if (op1.combinator() == op2.combinator()) { DEBUG_PRINTLN(ALL, "sel1: " << sel1) DEBUG_PRINTLN(ALL, "sel2: " << sel2) Complex_Selector* pMergedWrapper = sel1.selector()->clone(ctx); // Clone the Complex_Selector to get back to something we can transform to a node once we replace the head with the unification result // TODO: does subject matter? Ruby: return unless merged = sel1.unify(sel2.members, sel2.subject?) Compound_Selector* pMerged = sel1.selector()->head()->unify_with(sel2.selector()->head(), ctx); pMergedWrapper->head(pMerged); DEBUG_EXEC(ALL, printCompoundSelector(pMerged, "MERGED: ")) if (!pMerged) { return Node::createNil(); } res.collection()->push_front(op1); res.collection()->push_front(Node::createSelector(pMergedWrapper, ctx)); DEBUG_PRINTLN(ALL, "RESULT: " << res) } else { return Node::createNil(); } return mergeFinalOps(seq1, seq2, ctx, res); } else if (!ops1.collection()->empty()) { Node op1 = ops1.collection()->front(); if (op1.combinator() == Complex_Selector::PARENT_OF && !seq2.collection()->empty() && seq2.collection()->back().selector()->is_superselector_of(seq1.collection()->back().selector())) { seq2.collection()->pop_back(); } // TODO: consider unshift(NodeCollection, Node) res.collection()->push_front(op1); res.collection()->push_front(seq1.collection()->back()); seq1.collection()->pop_back(); return mergeFinalOps(seq1, seq2, ctx, res); } else { // !ops2.collection()->empty() Node op2 = ops2.collection()->front(); if (op2.combinator() == Complex_Selector::PARENT_OF && !seq1.collection()->empty() && seq1.collection()->back().selector()->is_superselector_of(seq2.collection()->back().selector())) { seq1.collection()->pop_back(); } res.collection()->push_front(op2); res.collection()->push_front(seq2.collection()->back()); seq2.collection()->pop_back(); return mergeFinalOps(seq1, seq2, ctx, res); } } /* This is the equivalent of ruby's Sequence.subweave. Here is the original subweave code for reference during porting. def subweave(seq1, seq2) return [seq2] if seq1.empty? return [seq1] if seq2.empty? seq1, seq2 = seq1.dup, seq2.dup return unless init = merge_initial_ops(seq1, seq2) return unless fin = merge_final_ops(seq1, seq2) seq1 = group_selectors(seq1) seq2 = group_selectors(seq2) lcs = Sass::Util.lcs(seq2, seq1) do |s1, s2| next s1 if s1 == s2 next unless s1.first.is_a?(SimpleSequence) && s2.first.is_a?(SimpleSequence) next s2 if parent_superselector?(s1, s2) next s1 if parent_superselector?(s2, s1) end diff = [[init]] until lcs.empty? diff << chunks(seq1, seq2) {|s| parent_superselector?(s.first, lcs.first)} << [lcs.shift] seq1.shift seq2.shift end diff << chunks(seq1, seq2) {|s| s.empty?} diff += fin.map {|sel| sel.is_a?(Array) ? sel : [sel]} diff.reject! {|c| c.empty?} result = Sass::Util.paths(diff).map {|p| p.flatten}.reject {|p| path_has_two_subjects?(p)} result end */ static Node subweave(Node& one, Node& two, Context& ctx) { // Check for the simple cases if (one.collection()->size() == 0) { Node out = Node::createCollection(); out.collection()->push_back(two); return out; } if (two.collection()->size() == 0) { Node out = Node::createCollection(); out.collection()->push_back(one); return out; } Node seq1 = Node::createCollection(); seq1.plus(one); Node seq2 = Node::createCollection(); seq2.plus(two); DEBUG_PRINTLN(SUBWEAVE, "SUBWEAVE ONE: " << seq1) DEBUG_PRINTLN(SUBWEAVE, "SUBWEAVE TWO: " << seq2) Node init = mergeInitialOps(seq1, seq2, ctx); if (init.isNil()) { return Node::createNil(); } DEBUG_PRINTLN(SUBWEAVE, "INIT: " << init) Node res = Node::createCollection(); Node fin = mergeFinalOps(seq1, seq2, ctx, res); if (fin.isNil()) { return Node::createNil(); } DEBUG_PRINTLN(SUBWEAVE, "FIN: " << fin) // Moving this line up since fin isn't modified between now and when it happened before // fin.map {|sel| sel.is_a?(Array) ? sel : [sel]} for (NodeDeque::iterator finIter = fin.collection()->begin(), finEndIter = fin.collection()->end(); finIter != finEndIter; ++finIter) { Node& childNode = *finIter; if (!childNode.isCollection()) { Node wrapper = Node::createCollection(); wrapper.collection()->push_back(childNode); childNode = wrapper; } } DEBUG_PRINTLN(SUBWEAVE, "FIN MAPPED: " << fin) Node groupSeq1 = groupSelectors(seq1, ctx); DEBUG_PRINTLN(SUBWEAVE, "SEQ1: " << groupSeq1) Node groupSeq2 = groupSelectors(seq2, ctx); DEBUG_PRINTLN(SUBWEAVE, "SEQ2: " << groupSeq2) ComplexSelectorDeque groupSeq1Converted; nodeToComplexSelectorDeque(groupSeq1, groupSeq1Converted, ctx); ComplexSelectorDeque groupSeq2Converted; nodeToComplexSelectorDeque(groupSeq2, groupSeq2Converted, ctx); ComplexSelectorDeque out; LcsCollectionComparator collectionComparator(ctx); lcs(groupSeq2Converted, groupSeq1Converted, collectionComparator, ctx, out); Node seqLcs = complexSelectorDequeToNode(out, ctx); DEBUG_PRINTLN(SUBWEAVE, "SEQLCS: " << seqLcs) Node initWrapper = Node::createCollection(); initWrapper.collection()->push_back(init); Node diff = Node::createCollection(); diff.collection()->push_back(initWrapper); DEBUG_PRINTLN(SUBWEAVE, "DIFF INIT: " << diff) while (!seqLcs.collection()->empty()) { ParentSuperselectorChunker superselectorChunker(seqLcs, ctx); Node chunksResult = chunks(groupSeq1, groupSeq2, superselectorChunker); diff.collection()->push_back(chunksResult); Node lcsWrapper = Node::createCollection(); lcsWrapper.collection()->push_back(seqLcs.collection()->front()); seqLcs.collection()->pop_front(); diff.collection()->push_back(lcsWrapper); groupSeq1.collection()->pop_front(); groupSeq2.collection()->pop_front(); } DEBUG_PRINTLN(SUBWEAVE, "DIFF POST LCS: " << diff) DEBUG_PRINTLN(SUBWEAVE, "CHUNKS: ONE=" << groupSeq1 << " TWO=" << groupSeq2) SubweaveEmptyChunker emptyChunker; Node chunksResult = chunks(groupSeq1, groupSeq2, emptyChunker); diff.collection()->push_back(chunksResult); DEBUG_PRINTLN(SUBWEAVE, "DIFF POST CHUNKS: " << diff) diff.collection()->insert(diff.collection()->end(), fin.collection()->begin(), fin.collection()->end()); DEBUG_PRINTLN(SUBWEAVE, "DIFF POST FIN MAPPED: " << diff) // JMA - filter out the empty nodes (use a new collection, since iterator erase() invalidates the old collection) Node diffFiltered = Node::createCollection(); for (NodeDeque::iterator diffIter = diff.collection()->begin(), diffEndIter = diff.collection()->end(); diffIter != diffEndIter; ++diffIter) { Node& node = *diffIter; if (node.collection() && !node.collection()->empty()) { diffFiltered.collection()->push_back(node); } } diff = diffFiltered; DEBUG_PRINTLN(SUBWEAVE, "DIFF POST REJECT: " << diff) Node pathsResult = paths(diff, ctx); DEBUG_PRINTLN(SUBWEAVE, "PATHS: " << pathsResult) // We're flattening in place for (NodeDeque::iterator pathsIter = pathsResult.collection()->begin(), pathsEndIter = pathsResult.collection()->end(); pathsIter != pathsEndIter; ++pathsIter) { Node& child = *pathsIter; child = flatten(child, ctx); } DEBUG_PRINTLN(SUBWEAVE, "FLATTENED: " << pathsResult) /* TODO: implement rejected = mapped.reject {|p| path_has_two_subjects?(p)} $stderr.puts "REJECTED: #{rejected}" */ return pathsResult; } /* // disabled to avoid clang warning [-Wunused-function] static Node subweaveNaive(const Node& one, const Node& two, Context& ctx) { Node out = Node::createCollection(); // Check for the simple cases if (one.isNil()) { out.collection()->push_back(two.clone(ctx)); } else if (two.isNil()) { out.collection()->push_back(one.clone(ctx)); } else { // Do the naive implementation. pOne = A B and pTwo = C D ...yields... A B C D and C D A B // See https://gist.github.com/nex3/7609394 for details. Node firstPerm = one.clone(ctx); Node twoCloned = two.clone(ctx); firstPerm.plus(twoCloned); out.collection()->push_back(firstPerm); Node secondPerm = two.clone(ctx); Node oneCloned = one.clone(ctx); secondPerm.plus(oneCloned ); out.collection()->push_back(secondPerm); } return out; } */ /* This is the equivalent of ruby's Sequence.weave. The following is the modified version of the ruby code that was more portable to C++. You should be able to drop it into ruby 3.2.19 and get the same results from ruby sass. def weave(path) # This function works by moving through the selector path left-to-right, # building all possible prefixes simultaneously. These prefixes are # `befores`, while the remaining parenthesized suffixes is `afters`. befores = [[]] afters = path.dup until afters.empty? current = afters.shift.dup last_current = [current.pop] tempResult = [] for before in befores do sub = subweave(before, current) if sub.nil? next end for seqs in sub do tempResult.push(seqs + last_current) end end befores = tempResult end return befores end */ /* def weave(path) befores = [[]] afters = path.dup until afters.empty? current = afters.shift.dup last_current = [current.pop] tempResult = [] for before in befores do sub = subweave(before, current) if sub.nil? next [] end for seqs in sub do toPush = seqs + last_current tempResult.push(seqs + last_current) end end befores = tempResult end return befores end */ static Node weave(Node& path, Context& ctx) { DEBUG_PRINTLN(WEAVE, "WEAVE: " << path) Node befores = Node::createCollection(); befores.collection()->push_back(Node::createCollection()); Node afters = Node::createCollection(); afters.plus(path); while (!afters.collection()->empty()) { Node current = afters.collection()->front().clone(ctx); afters.collection()->pop_front(); DEBUG_PRINTLN(WEAVE, "CURRENT: " << current) Node last_current = Node::createCollection(); last_current.collection()->push_back(current.collection()->back()); current.collection()->pop_back(); DEBUG_PRINTLN(WEAVE, "CURRENT POST POP: " << current) DEBUG_PRINTLN(WEAVE, "LAST CURRENT: " << last_current) Node tempResult = Node::createCollection(); for (NodeDeque::iterator beforesIter = befores.collection()->begin(), beforesEndIter = befores.collection()->end(); beforesIter != beforesEndIter; beforesIter++) { Node& before = *beforesIter; Node sub = subweave(before, current, ctx); DEBUG_PRINTLN(WEAVE, "SUB: " << sub) if (sub.isNil()) { return Node::createCollection(); } for (NodeDeque::iterator subIter = sub.collection()->begin(), subEndIter = sub.collection()->end(); subIter != subEndIter; subIter++) { Node& seqs = *subIter; Node toPush = Node::createCollection(); toPush.plus(seqs); toPush.plus(last_current); tempResult.collection()->push_back(toPush); } } befores = tempResult; } return befores; } // This forward declaration is needed since extendComplexSelector calls extendCompoundSelector, which may recursively // call extendComplexSelector again. static Node extendComplexSelector( Complex_Selector* pComplexSelector, Context& ctx, ExtensionSubsetMap& subsetMap, set seen); /* This is the equivalent of ruby's SimpleSequence.do_extend. // TODO: I think I have some modified ruby code to put here. Check. */ /* ISSUES: - Previous TODO: Do we need to group the results by extender? - What does subject do in?: next unless unified = seq.members.last.unify(self_without_sel, subject?) - IMPROVEMENT: The search for uniqueness at the end is not ideal since it's has to loop over everything... - IMPROVEMENT: Check if the final search for uniqueness is doing anything that extendComplexSelector isn't already doing... */ template class GroupByToAFunctor { public: KeyType operator()(ExtensionPair& extPair) const { Complex_Selector* pSelector = extPair.first; return *pSelector; } }; static Node extendCompoundSelector( Compound_Selector* pSelector, Context& ctx, ExtensionSubsetMap& subsetMap, set seen) { DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSelector, "EXTEND COMPOUND: ")) Node extendedSelectors = Node::createCollection(); To_String to_string; SubsetMapEntries entries = subsetMap.get_v(pSelector->to_str_vec()); typedef vector > > GroupedByToAResult; GroupByToAFunctor extPairKeyFunctor; GroupedByToAResult arr; group_by_to_a(entries, extPairKeyFunctor, arr); typedef pair SelsNewSeqPair; typedef vector SelsNewSeqPairCollection; SelsNewSeqPairCollection holder; for (GroupedByToAResult::iterator groupedIter = arr.begin(), groupedIterEnd = arr.end(); groupedIter != groupedIterEnd; groupedIter++) { pair >& groupedPair = *groupedIter; Complex_Selector& seq = groupedPair.first; vector& group = groupedPair.second; // DEBUG_EXEC(EXTEND_COMPOUND, printComplexSelector(&seq, "SEQ: ")) Compound_Selector* pSels = new (ctx.mem) Compound_Selector(pSelector->path(), pSelector->position()); for (vector::iterator groupIter = group.begin(), groupIterEnd = group.end(); groupIter != groupIterEnd; groupIter++) { ExtensionPair& pair = *groupIter; Compound_Selector* pCompound = pair.second; for (size_t index = 0; index < pCompound->length(); index++) { Simple_Selector* pSimpleSelector = (*pCompound)[index]; (*pSels) << pSimpleSelector; } } // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSels, "SELS: ")) Complex_Selector* pExtComplexSelector = &seq; // The selector up to where the @extend is (ie, the thing to merge) Compound_Selector* pExtCompoundSelector = pSels; // All the simple selectors to be replaced from the current compound selector from all extensions // TODO: This can return a Compound_Selector with no elements. Should that just be returning NULL? Compound_Selector* pSelectorWithoutExtendSelectors = pSelector->minus(pExtCompoundSelector, ctx); // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSelector, "MEMBERS: ")) // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSelectorWithoutExtendSelectors, "SELF_WO_SEL: ")) Compound_Selector* pInnermostCompoundSelector = pExtComplexSelector->base(); Compound_Selector* pUnifiedSelector = NULL; if (!pInnermostCompoundSelector) { pInnermostCompoundSelector = new (ctx.mem) Compound_Selector(pSelector->path(), pSelector->position()); } pUnifiedSelector = pInnermostCompoundSelector->unify_with(pSelectorWithoutExtendSelectors, ctx); // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pInnermostCompoundSelector, "LHS: ")) // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSelectorWithoutExtendSelectors, "RHS: ")) // DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pUnifiedSelector, "UNIFIED: ")) if (!pUnifiedSelector || pUnifiedSelector->length() == 0) { continue; } // TODO: implement the parent directive match (if necessary based on test failures) // next if group.map {|e, _| check_directives_match!(e, parent_directives)}.none? // TODO: This seems a little fishy to me. See if it causes any problems. From the ruby, we should be able to just // get rid of the last Compound_Selector and replace it with this one. I think the reason this code is more // complex is that Complex_Selector contains a combinator, but in ruby combinators have already been filtered // out and aren't operated on. Complex_Selector* pNewSelector = pExtComplexSelector->cloneFully(ctx); Complex_Selector* pNewInnerMost = new (ctx.mem) Complex_Selector(pSelector->path(), pSelector->position(), Complex_Selector::ANCESTOR_OF, pUnifiedSelector, NULL); Complex_Selector::Combinator combinator = pNewSelector->clear_innermost(); pNewSelector->set_innermost(pNewInnerMost, combinator); #ifdef DEBUG SourcesSet debugSet; debugSet = pNewSelector->sources(); if (debugSet.size() > 0) { throw "The new selector should start with no sources. Something needs to be cloned to fix this."; } debugSet = pExtComplexSelector->sources(); if (debugSet.size() > 0) { throw "The extension selector from our subset map should not have sources. These will bleed to the new selector. Something needs to be cloned to fix this."; } #endif // Set the sources on our new Complex_Selector to the sources of this simple sequence plus the thing we're extending. DEBUG_PRINTLN(EXTEND_COMPOUND, "SOURCES SETTING ON NEW SEQ: " << complexSelectorToNode(pNewSelector, ctx)) DEBUG_EXEC(EXTEND_COMPOUND, SourcesSet oldSet = pNewSelector->sources(); printSourcesSet(oldSet, ctx, "SOURCES NEW SEQ BEGIN: ")) SourcesSet newSourcesSet = pSelector->sources(); DEBUG_EXEC(EXTEND_COMPOUND, printSourcesSet(newSourcesSet, ctx, "SOURCES THIS EXTEND: ")) newSourcesSet.insert(pExtComplexSelector); DEBUG_EXEC(EXTEND_COMPOUND, printSourcesSet(newSourcesSet, ctx, "SOURCES WITH NEW SOURCE: ")) pNewSelector->addSources(newSourcesSet, ctx); DEBUG_EXEC(EXTEND_COMPOUND, SourcesSet newSet = pNewSelector->sources(); printSourcesSet(newSet, ctx, "SOURCES ON NEW SELECTOR AFTER ADD: ")) DEBUG_EXEC(EXTEND_COMPOUND, printSourcesSet(pSelector->sources(), ctx, "SOURCES THIS EXTEND WHICH SHOULD BE SAME STILL: ")) holder.push_back(make_pair(pSels, pNewSelector)); } for (SelsNewSeqPairCollection::iterator holderIter = holder.begin(), holderIterEnd = holder.end(); holderIter != holderIterEnd; holderIter++) { SelsNewSeqPair& pair = *holderIter; Compound_Selector* pSels = pair.first; Complex_Selector* pNewSelector = pair.second; if (seen.find(*pSels) != seen.end()) { continue; } set recurseSeen(seen); recurseSeen.insert(*pSels); DEBUG_PRINTLN(EXTEND_COMPOUND, "RECURSING DO EXTEND: " << complexSelectorToNode(pNewSelector, ctx)) Node recurseExtendedSelectors = extendComplexSelector(pNewSelector, ctx, subsetMap, recurseSeen); DEBUG_PRINTLN(EXTEND_COMPOUND, "RECURSING DO EXTEND RETURN: " << recurseExtendedSelectors) for (NodeDeque::iterator iterator = recurseExtendedSelectors.collection()->begin(), endIterator = recurseExtendedSelectors.collection()->end(); iterator != endIterator; ++iterator) { Node& newSelector = *iterator; // DEBUG_PRINTLN(EXTEND_COMPOUND, "EXTENDED AT THIS POINT: " << extendedSelectors) // DEBUG_PRINTLN(EXTEND_COMPOUND, "SELECTOR EXISTS ALREADY: " << newSelector << " " << extendedSelectors.contains(newSelector, false /*simpleSelectorOrderDependent*/)); if (!extendedSelectors.contains(newSelector, false /*simpleSelectorOrderDependent*/)) { // DEBUG_PRINTLN(EXTEND_COMPOUND, "ADDING NEW SELECTOR") extendedSelectors.collection()->push_back(newSelector); } } } DEBUG_EXEC(EXTEND_COMPOUND, printCompoundSelector(pSelector, "EXTEND COMPOUND END: ")) return extendedSelectors; } static bool complexSelectorHasExtension( Complex_Selector* pComplexSelector, Context& ctx, ExtensionSubsetMap& subsetMap) { bool hasExtension = false; Complex_Selector* pIter = pComplexSelector; while (!hasExtension && pIter) { Compound_Selector* pHead = pIter->head(); if (pHead) { SubsetMapEntries entries = subsetMap.get_v(pHead->to_str_vec()); hasExtension = entries.size() > 0; } pIter = pIter->tail(); } return hasExtension; } /* This is the equivalent of ruby's Sequence.do_extend. // TODO: I think I have some modified ruby code to put here. Check. */ /* ISSUES: - check to automatically include combinators doesn't transfer over to libsass' data model where the combinator and compound selector are one unit next [[sseq_or_op]] unless sseq_or_op.is_a?(SimpleSequence) */ static Node extendComplexSelector( Complex_Selector* pComplexSelector, Context& ctx, ExtensionSubsetMap& subsetMap, set seen) { Node complexSelector = complexSelectorToNode(pComplexSelector, ctx); DEBUG_PRINTLN(EXTEND_COMPLEX, "EXTEND COMPLEX: " << complexSelector) Node extendedNotExpanded = Node::createCollection(); for (NodeDeque::iterator complexSelIter = complexSelector.collection()->begin(), complexSelIterEnd = complexSelector.collection()->end(); complexSelIter != complexSelIterEnd; ++complexSelIter) { Node& sseqOrOp = *complexSelIter; DEBUG_PRINTLN(EXTEND_COMPLEX, "LOOP: " << sseqOrOp) // If it's not a selector (meaning it's a combinator), just include it automatically if (!sseqOrOp.isSelector()) { // Wrap our Combinator in two collections to match ruby. This is essentially making a collection Node // with one collection child. The collection child represents a Complex_Selector that is only a combinator. Node outer = Node::createCollection(); Node inner = Node::createCollection(); outer.collection()->push_back(inner); inner.collection()->push_back(sseqOrOp); extendedNotExpanded.collection()->push_back(outer); continue; } Compound_Selector* pCompoundSelector = sseqOrOp.selector()->head(); Node extended = extendCompoundSelector(pCompoundSelector, ctx, subsetMap, seen); DEBUG_PRINTLN(EXTEND_COMPLEX, "EXTENDED: " << extended) // Prepend the Compound_Selector based on the choices logic; choices seems to be extend but with an ruby Array instead of a Sequence // due to the member mapping: choices = extended.map {|seq| seq.members} Complex_Selector* pJustCurrentCompoundSelector = sseqOrOp.selector(); bool isSuperselector = false; for (NodeDeque::iterator iterator = extended.collection()->begin(), endIterator = extended.collection()->end(); iterator != endIterator; ++iterator) { Node& childNode = *iterator; Complex_Selector* pExtensionSelector = nodeToComplexSelector(childNode, ctx); if (pExtensionSelector->is_superselector_of(pJustCurrentCompoundSelector)) { isSuperselector = true; break; } } if (!isSuperselector) { extended.collection()->push_front(complexSelectorToNode(pJustCurrentCompoundSelector, ctx)); } DEBUG_PRINTLN(EXTEND_COMPLEX, "CHOICES UNSHIFTED: " << extended) // Aggregate our current extensions extendedNotExpanded.collection()->push_back(extended); } DEBUG_PRINTLN(EXTEND_COMPLEX, "EXTENDED NOT EXPANDED: " << extendedNotExpanded) // Ruby Equivalent: paths Node paths = Sass::paths(extendedNotExpanded, ctx); DEBUG_PRINTLN(EXTEND_COMPLEX, "PATHS: " << paths) // Ruby Equivalent: weave Node weaves = Node::createCollection(); for (NodeDeque::iterator pathsIter = paths.collection()->begin(), pathsEndIter = paths.collection()->end(); pathsIter != pathsEndIter; ++pathsIter) { Node& path = *pathsIter; Node weaved = weave(path, ctx); weaves.collection()->push_back(weaved); } DEBUG_PRINTLN(EXTEND_COMPLEX, "WEAVES: " << weaves) // Ruby Equivalent: trim Node trimmed = trim(weaves, ctx); DEBUG_PRINTLN(EXTEND_COMPLEX, "TRIMMED: " << trimmed) // Ruby Equivalent: flatten Node extendedSelectors = flatten(trimmed, ctx, 1); DEBUG_PRINTLN(EXTEND_COMPLEX, ">>>>> EXTENDED: " << extendedSelectors) DEBUG_PRINTLN(EXTEND_COMPLEX, "EXTEND COMPLEX END: " << complexSelector) return extendedSelectors; } /* This is the equivalent of ruby's CommaSequence.do_extend. */ static Selector_List* extendSelectorList(Selector_List* pSelectorList, Context& ctx, ExtensionSubsetMap& subsetMap, bool& extendedSomething) { To_String to_string; Selector_List* pNewSelectors = new (ctx.mem) Selector_List(pSelectorList->path(), pSelectorList->position(), pSelectorList->length()); extendedSomething = false; for (size_t index = 0, length = pSelectorList->length(); index < length; index++) { Complex_Selector* pSelector = (*pSelectorList)[index]; // ruby sass seems to keep a list of things that have extensions and then only extend those. We don't currently do that. // Since it's not that expensive to check if an extension exists in the subset map and since it can be relatively expensive to // run through the extend code (which does a data model transformation), check if there is anything to extend before doing // the extend. We might be able to optimize extendComplexSelector, but this approach keeps us closer to ruby sass (which helps // when debugging). if (!complexSelectorHasExtension(pSelector, ctx, subsetMap)) { *pNewSelectors << pSelector; continue; } extendedSomething = true; set seen; Node extendedSelectors = extendComplexSelector(pSelector, ctx, subsetMap, seen); if (!pSelector->has_placeholder()) { if (!extendedSelectors.contains(complexSelectorToNode(pSelector, ctx), true /*simpleSelectorOrderDependent*/)) { *pNewSelectors << pSelector; } } for (NodeDeque::iterator iterator = extendedSelectors.collection()->begin(), iteratorEnd = extendedSelectors.collection()->end(); iterator != iteratorEnd; ++iterator) { Node& childNode = *iterator; *pNewSelectors << nodeToComplexSelector(childNode, ctx); } } return pNewSelectors; } bool shouldExtendBlock(Block* b) { // If a block is empty, there's no reason to extend it since any rules placed on this block // won't have any output. The main benefit of this is for structures like: // // .a { // .b { // x: y; // } // } // // We end up visiting two rulesets (one with the selector .a and the other with the selector .a .b). // In this case, we don't want to try to pull rules onto .a since they won't get output anyway since // there are no child statements. However .a .b should have extensions applied. for (size_t i = 0, L = b->length(); i < L; ++i) { Statement* stm = (*b)[i]; if (typeid(*stm) == typeid(Ruleset)) { // Do nothing. This doesn't count as a statement that causes extension since we'll iterate over this rule set in a future visit and try to extend it. } else { return true; } } return false; } // Extend a ruleset by extending the selectors and updating them on the ruleset. The block's rules don't need to change. template static void extendObjectWithSelectorAndBlock(ObjectType* pObject, Context& ctx, ExtensionSubsetMap& subsetMap) { To_String to_string; DEBUG_PRINTLN(EXTEND_OBJECT, "FOUND SELECTOR: " << static_cast(pObject->selector())->perform(&to_string)) // Ruby sass seems to filter nodes that don't have any content well before we get here. I'm not sure the repercussions // of doing so, so for now, let's just not extend things that won't be output later. if (!shouldExtendBlock(pObject->block())) { DEBUG_PRINTLN(EXTEND_OBJECT, "RETURNING WITHOUT EXTEND ATTEMPT") return; } bool extendedSomething = false; Selector_List* pNewSelectorList = extendSelectorList(static_cast(pObject->selector()), ctx, subsetMap, extendedSomething); if (extendedSomething && pNewSelectorList) { DEBUG_PRINTLN(EXTEND_OBJECT, "EXTEND ORIGINAL SELECTORS: " << static_cast(pObject->selector())->perform(&to_string)) DEBUG_PRINTLN(EXTEND_OBJECT, "EXTEND SETTING NEW SELECTORS: " << pNewSelectorList->perform(&to_string)) // re-parse in order to restructure expanded placeholder nodes correctly. // // TODO: I don't know if this is needed, but it was in the original C++ implementation, so I kept it. Try running the tests without re-parsing. pObject->selector( Parser::from_c_str( (pNewSelectorList->perform(&to_string) + ";").c_str(), ctx, pNewSelectorList->path(), pNewSelectorList->position() ).parse_selector_group() ); } else { DEBUG_PRINTLN(EXTEND_OBJECT, "EXTEND DID NOT TRY TO EXTEND ANYTHING") } } Extend::Extend(Context& ctx, ExtensionSubsetMap& ssm) : ctx(ctx), subset_map(ssm) { } void Extend::operator()(Block* b) { for (size_t i = 0, L = b->length(); i < L; ++i) { (*b)[i]->perform(this); } } void Extend::operator()(Ruleset* pRuleset) { extendObjectWithSelectorAndBlock(pRuleset, ctx, subset_map); pRuleset->block()->perform(this); } void Extend::operator()(Feature_Block* pFeatureBlock) { if (pFeatureBlock->selector()) { extendObjectWithSelectorAndBlock(pFeatureBlock, ctx, subset_map); } pFeatureBlock->block()->perform(this); } void Extend::operator()(Media_Block* pMediaBlock) { if (pMediaBlock->selector()) { extendObjectWithSelectorAndBlock(pMediaBlock, ctx, subset_map); } pMediaBlock->block()->perform(this); } void Extend::operator()(At_Rule* a) { if (a->block()) a->block()->perform(this); } }