// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*- /* * Copyright 2010 ZXing authors All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include using std::vector; using zxing::Ref; using zxing::ArrayRef; using zxing::Array; using zxing::Result; using zxing::FormatException; using zxing::NotFoundException; using zxing::oned::ITFReader; // VC++ using zxing::BitArray; #define VECTOR_INIT(v) v, v + sizeof(v)/sizeof(v[0]) namespace { const int W = 3; // Pixel width of a wide line const int N = 1; // Pixed width of a narrow line const int DEFAULT_ALLOWED_LENGTHS_[] = { 48, 44, 24, 20, 18, 16, 14, 12, 10, 8, 6 }; const ArrayRef DEFAULT_ALLOWED_LENGTHS (new Array(VECTOR_INIT(DEFAULT_ALLOWED_LENGTHS_))); /** * Start/end guard pattern. * * Note: The end pattern is reversed because the row is reversed before * searching for the END_PATTERN */ const int START_PATTERN_[] = {N, N, N, N}; const vector START_PATTERN (VECTOR_INIT(START_PATTERN_)); const int END_PATTERN_REVERSED_[] = {N, N, W}; const vector END_PATTERN_REVERSED (VECTOR_INIT(END_PATTERN_REVERSED_)); /** * Patterns of Wide / Narrow lines to indicate each digit */ const int PATTERNS[][5] = { {N, N, W, W, N}, // 0 {W, N, N, N, W}, // 1 {N, W, N, N, W}, // 2 {W, W, N, N, N}, // 3 {N, N, W, N, W}, // 4 {W, N, W, N, N}, // 5 {N, W, W, N, N}, // 6 {N, N, N, W, W}, // 7 {W, N, N, W, N}, // 8 {N, W, N, W, N} // 9 }; } ITFReader::ITFReader() : narrowLineWidth(-1) { } Ref ITFReader::decodeRow(int rowNumber, Ref row) { // Find out where the Middle section (payload) starts & ends Range startRange = decodeStart(row); Range endRange = decodeEnd(row); std::string result; decodeMiddle(row, startRange[1], endRange[0], result); Ref resultString(new String(result)); ArrayRef allowedLengths; // Java hints stuff missing if (!allowedLengths) { allowedLengths = DEFAULT_ALLOWED_LENGTHS; } // To avoid false positives with 2D barcodes (and other patterns), make // an assumption that the decoded string must be 6, 10 or 14 digits. int length = resultString->size(); bool lengthOK = false; for (int i = 0, e = allowedLengths->size(); i < e; i++) { if (length == allowedLengths[i]) { lengthOK = true; break; } } if (!lengthOK) { throw FormatException(); } ArrayRef< Ref > resultPoints(2); resultPoints[0] = Ref(new OneDResultPoint(float(startRange[1]), float(rowNumber))); resultPoints[1] = Ref(new OneDResultPoint(float(endRange[0]), float(rowNumber))); return Ref(new Result(resultString, ArrayRef(), resultPoints, BarcodeFormat::ITF)); } /** * @param row row of black/white values to search * @param payloadStart offset of start pattern * @param resultString {@link StringBuffer} to append decoded chars to * @throws ReaderException if decoding could not complete successfully */ void ITFReader::decodeMiddle(Ref row, int payloadStart, int payloadEnd, std::string& resultString) { // Digits are interleaved in pairs - 5 black lines for one digit, and the // 5 // interleaved white lines for the second digit. // Therefore, need to scan 10 lines and then // split these into two arrays vector counterDigitPair(10, 0); vector counterBlack(5, 0); vector counterWhite(5, 0); while (payloadStart < payloadEnd) { // Get 10 runs of black/white. recordPattern(row, payloadStart, counterDigitPair); // Split them into each array for (int k = 0; k < 5; k++) { int twoK = k << 1; counterBlack[k] = counterDigitPair[twoK]; counterWhite[k] = counterDigitPair[twoK + 1]; } int bestMatch = decodeDigit(counterBlack); resultString.append(1, (char) ('0' + bestMatch)); bestMatch = decodeDigit(counterWhite); resultString.append(1, (char) ('0' + bestMatch)); for (int i = 0, e = counterDigitPair.size(); i < e; i++) { payloadStart += counterDigitPair[i]; } } } /** * Identify where the start of the middle / payload section starts. * * @param row row of black/white values to search * @return Array, containing index of start of 'start block' and end of * 'start block' * @throws ReaderException */ ITFReader::Range ITFReader::decodeStart(Ref row) { int endStart = skipWhiteSpace(row); Range startPattern = findGuardPattern(row, endStart, START_PATTERN); // Determine the width of a narrow line in pixels. We can do this by // getting the width of the start pattern and dividing by 4 because its // made up of 4 narrow lines. narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2; validateQuietZone(row, startPattern[0]); return startPattern; } /** * Identify where the end of the middle / payload section ends. * * @param row row of black/white values to search * @return Array, containing index of start of 'end block' and end of 'end * block' * @throws ReaderException */ ITFReader::Range ITFReader::decodeEnd(Ref row) { // For convenience, reverse the row and then // search from 'the start' for the end block BitArray::Reverse r (row); int endStart = skipWhiteSpace(row); Range endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED); // The start & end patterns must be pre/post fixed by a quiet zone. This // zone must be at least 10 times the width of a narrow line. // ref: http://www.barcode-1.net/i25code.html validateQuietZone(row, endPattern[0]); // Now recalculate the indices of where the 'endblock' starts & stops to // accommodate // the reversed nature of the search int temp = endPattern[0]; endPattern[0] = row->getSize() - endPattern[1]; endPattern[1] = row->getSize() - temp; return endPattern; } /** * The start & end patterns must be pre/post fixed by a quiet zone. This * zone must be at least 10 times the width of a narrow line. Scan back until * we either get to the start of the barcode or match the necessary number of * quiet zone pixels. * * Note: Its assumed the row is reversed when using this method to find * quiet zone after the end pattern. * * ref: http://www.barcode-1.net/i25code.html * * @param row bit array representing the scanned barcode. * @param startPattern index into row of the start or end pattern. * @throws ReaderException if the quiet zone cannot be found, a ReaderException is thrown. */ void ITFReader::validateQuietZone(Ref row, int startPattern) { int quietCount = this->narrowLineWidth * 10; // expect to find this many pixels of quiet zone for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) { if (row->get(i)) { break; } quietCount--; } if (quietCount != 0) { // Unable to find the necessary number of quiet zone pixels. throw NotFoundException(); } } /** * Skip all whitespace until we get to the first black line. * * @param row row of black/white values to search * @return index of the first black line. * @throws ReaderException Throws exception if no black lines are found in the row */ int ITFReader::skipWhiteSpace(Ref row) { int width = row->getSize(); int endStart = row->getNextSet(0); if (endStart == width) { throw NotFoundException(); } return endStart; } /** * @param row row of black/white values to search * @param rowOffset position to start search * @param pattern pattern of counts of number of black and white pixels that are * being searched for as a pattern * @return start/end horizontal offset of guard pattern, as an array of two * ints * @throws ReaderException if pattern is not found */ ITFReader::Range ITFReader::findGuardPattern(Ref row, int rowOffset, vector const& pattern) { // TODO: This is very similar to implementation in UPCEANReader. Consider if they can be // merged to a single method. int patternLength = pattern.size(); vector counters(patternLength); int width = row->getSize(); bool isWhite = false; int counterPosition = 0; int patternStart = rowOffset; for (int x = rowOffset; x < width; x++) { if (row->get(x) ^ isWhite) { counters[counterPosition]++; } else { if (counterPosition == patternLength - 1) { if (patternMatchVariance(counters, &pattern[0], MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) { return Range(patternStart, x); } patternStart += counters[0] + counters[1]; for (int y = 2; y < patternLength; y++) { counters[y - 2] = counters[y]; } counters[patternLength - 2] = 0; counters[patternLength - 1] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } throw NotFoundException(); } /** * Attempts to decode a sequence of ITF black/white lines into single * digit. * * @param counters the counts of runs of observed black/white/black/... values * @return The decoded digit * @throws ReaderException if digit cannot be decoded */ int ITFReader::decodeDigit(vector& counters){ int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept int bestMatch = -1; int max = sizeof(PATTERNS)/sizeof(PATTERNS[0]); for (int i = 0; i < max; i++) { int const* pattern = PATTERNS[i]; int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE); if (variance < bestVariance) { bestVariance = variance; bestMatch = i; } } if (bestMatch >= 0) { return bestMatch; } else { throw NotFoundException(); } } ITFReader::~ITFReader(){}