module DNN module Activations Layer = Layers::Layer OutputLayer = Layers::OutputLayer class Sigmoid < Layer def forward(x) @out = 1 / (1 + NMath.exp(-x)) end def backward(dout) dout * (1 - @out) * @out end end class Tanh < Layer include Xumo def forward(x) @x = x NMath.tanh(x) end def backward(dout) dout * (1.0 / NMath.cosh(@x)**2) end end class ReLU < Layer def forward(x) @x = x.clone x[x < 0] = 0 x end def backward(dout) @x[@x > 0] = 1 @x[@x <= 0] = 0 dout * @x end end class LeakyReLU < Layer include Xumo attr_reader :alpha def initialize(alpha = 0.3) @alpha = alpha end def self.load_hash(hash) self.new(hash[:alpha]) end def forward(x) @x = x.clone a = SFloat.ones(x.shape) a[x <= 0] = @alpha x * a end def backward(dout) @x[@x > 0] = 1 @x[@x <= 0] = @alpha dout * @x end def to_hash {name: self.class.name, alpha: alpha} end end class IdentityMSE < OutputLayer def forward(x) @out = x end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] 0.5 * ((@out - y)**2).sum / batch_size + ridge end end class SoftmaxWithLoss < OutputLayer def forward(x) @out = NMath.exp(x) / NMath.exp(x).sum(1).reshape(x.shape[0], 1) end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] -(y * NMath.log(@out + 1e-7)).sum / batch_size + ridge end end class SigmoidWithLoss < OutputLayer include Xumo def initialize @sigmoid = Sigmoid.new end def forward(x) @out = @sigmoid.forward(x) end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] -(y * NMath.log(@out + 1e-7) + (1 - y) * NMath.log(1 - @out + 1e-7)).sum / batch_size + ridge end end end end