// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "bootstrapper.h" #include "code-stubs.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "ic-inl.h" #include "parser.h" #include "regexp-macro-assembler.h" #include "register-allocator-inl.h" #include "scopes.h" #include "virtual-frame-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) // ------------------------------------------------------------------------- // Platform-specific FrameRegisterState functions. void FrameRegisterState::Save(MacroAssembler* masm) const { for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int action = registers_[i]; if (action == kPush) { __ push(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore && (action & kSyncedFlag) == 0) { __ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i)); } } } void FrameRegisterState::Restore(MacroAssembler* masm) const { // Restore registers in reverse order due to the stack. for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { int action = registers_[i]; if (action == kPush) { __ pop(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore) { action &= ~kSyncedFlag; __ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action)); } } } #undef __ #define __ ACCESS_MASM(masm_) // ------------------------------------------------------------------------- // Platform-specific DeferredCode functions. void DeferredCode::SaveRegisters() { frame_state_.Save(masm_); } void DeferredCode::RestoreRegisters() { frame_state_.Restore(masm_); } // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { frame_state_->Save(masm); } void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { frame_state_->Restore(masm); } void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterInternalFrame(); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveInternalFrame(); } // ------------------------------------------------------------------------- // CodeGenState implementation. CodeGenState::CodeGenState(CodeGenerator* owner) : owner_(owner), destination_(NULL), previous_(NULL) { owner_->set_state(this); } CodeGenState::CodeGenState(CodeGenerator* owner, ControlDestination* destination) : owner_(owner), destination_(destination), previous_(owner->state()) { owner_->set_state(this); } CodeGenState::~CodeGenState() { ASSERT(owner_->state() == this); owner_->set_state(previous_); } // ------------------------------------------------------------------------- // CodeGenerator implementation. CodeGenerator::CodeGenerator(MacroAssembler* masm) : deferred_(8), masm_(masm), info_(NULL), frame_(NULL), allocator_(NULL), state_(NULL), loop_nesting_(0), function_return_is_shadowed_(false), in_spilled_code_(false) { } // Calling conventions: // rbp: caller's frame pointer // rsp: stack pointer // rdi: called JS function // rsi: callee's context void CodeGenerator::Generate(CompilationInfo* info) { // Record the position for debugging purposes. CodeForFunctionPosition(info->function()); Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); // Initialize state. info_ = info; ASSERT(allocator_ == NULL); RegisterAllocator register_allocator(this); allocator_ = ®ister_allocator; ASSERT(frame_ == NULL); frame_ = new VirtualFrame(); set_in_spilled_code(false); // Adjust for function-level loop nesting. ASSERT_EQ(0, loop_nesting_); loop_nesting_ = info->is_in_loop() ? 1 : 0; JumpTarget::set_compiling_deferred_code(false); { CodeGenState state(this); // Entry: // Stack: receiver, arguments, return address. // rbp: caller's frame pointer // rsp: stack pointer // rdi: called JS function // rsi: callee's context allocator_->Initialize(); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { frame_->SpillAll(); __ int3(); } #endif frame_->Enter(); // Allocate space for locals and initialize them. frame_->AllocateStackSlots(); // Allocate the local context if needed. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ allocate local context"); // Allocate local context. // Get outer context and create a new context based on it. frame_->PushFunction(); Result context; if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); context = frame_->CallStub(&stub, 1); } else { context = frame_->CallRuntime(Runtime::kNewContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and rsi agree. if (FLAG_debug_code) { __ cmpq(context.reg(), rsi); __ Assert(equal, "Runtime::NewContext should end up in rsi"); } } // TODO(1241774): Improve this code: // 1) only needed if we have a context // 2) no need to recompute context ptr every single time // 3) don't copy parameter operand code from SlotOperand! { Comment cmnt2(masm_, "[ copy context parameters into .context"); // Note that iteration order is relevant here! If we have the same // parameter twice (e.g., function (x, y, x)), and that parameter // needs to be copied into the context, it must be the last argument // passed to the parameter that needs to be copied. This is a rare // case so we don't check for it, instead we rely on the copying // order: such a parameter is copied repeatedly into the same // context location and thus the last value is what is seen inside // the function. for (int i = 0; i < scope()->num_parameters(); i++) { Variable* par = scope()->parameter(i); Slot* slot = par->AsSlot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { // The use of SlotOperand below is safe in unspilled code // because the slot is guaranteed to be a context slot. // // There are no parameters in the global scope. ASSERT(!scope()->is_global_scope()); frame_->PushParameterAt(i); Result value = frame_->Pop(); value.ToRegister(); // SlotOperand loads context.reg() with the context object // stored to, used below in RecordWrite. Result context = allocator_->Allocate(); ASSERT(context.is_valid()); __ movq(SlotOperand(slot, context.reg()), value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); frame_->Spill(context.reg()); frame_->Spill(value.reg()); __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); } } } // Store the arguments object. This must happen after context // initialization because the arguments object may be stored in // the context. if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { StoreArgumentsObject(true); } // Initialize ThisFunction reference if present. if (scope()->is_function_scope() && scope()->function() != NULL) { frame_->Push(Factory::the_hole_value()); StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); } // Initialize the function return target after the locals are set // up, because it needs the expected frame height from the frame. function_return_.set_direction(JumpTarget::BIDIRECTIONAL); function_return_is_shadowed_ = false; // Generate code to 'execute' declarations and initialize functions // (source elements). In case of an illegal redeclaration we need to // handle that instead of processing the declarations. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ illegal redeclarations"); scope()->VisitIllegalRedeclaration(this); } else { Comment cmnt(masm_, "[ declarations"); ProcessDeclarations(scope()->declarations()); // Bail out if a stack-overflow exception occurred when processing // declarations. if (HasStackOverflow()) return; } if (FLAG_trace) { frame_->CallRuntime(Runtime::kTraceEnter, 0); // Ignore the return value. } CheckStack(); // Compile the body of the function in a vanilla state. Don't // bother compiling all the code if the scope has an illegal // redeclaration. if (!scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ function body"); #ifdef DEBUG bool is_builtin = Bootstrapper::IsActive(); bool should_trace = is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; if (should_trace) { frame_->CallRuntime(Runtime::kDebugTrace, 0); // Ignore the return value. } #endif VisitStatements(info->function()->body()); // Handle the return from the function. if (has_valid_frame()) { // If there is a valid frame, control flow can fall off the end of // the body. In that case there is an implicit return statement. ASSERT(!function_return_is_shadowed_); CodeForReturnPosition(info->function()); frame_->PrepareForReturn(); Result undefined(Factory::undefined_value()); if (function_return_.is_bound()) { function_return_.Jump(&undefined); } else { function_return_.Bind(&undefined); GenerateReturnSequence(&undefined); } } else if (function_return_.is_linked()) { // If the return target has dangling jumps to it, then we have not // yet generated the return sequence. This can happen when (a) // control does not flow off the end of the body so we did not // compile an artificial return statement just above, and (b) there // are return statements in the body but (c) they are all shadowed. Result return_value; function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } // Adjust for function-level loop nesting. ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0); loop_nesting_ = 0; // Code generation state must be reset. ASSERT(state_ == NULL); ASSERT(!function_return_is_shadowed_); function_return_.Unuse(); DeleteFrame(); // Process any deferred code using the register allocator. if (!HasStackOverflow()) { JumpTarget::set_compiling_deferred_code(true); ProcessDeferred(); JumpTarget::set_compiling_deferred_code(false); } // There is no need to delete the register allocator, it is a // stack-allocated local. allocator_ = NULL; } Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { // Currently, this assertion will fail if we try to assign to // a constant variable that is constant because it is read-only // (such as the variable referring to a named function expression). // We need to implement assignments to read-only variables. // Ideally, we should do this during AST generation (by converting // such assignments into expression statements); however, in general // we may not be able to make the decision until past AST generation, // that is when the entire program is known. ASSERT(slot != NULL); int index = slot->index(); switch (slot->type()) { case Slot::PARAMETER: return frame_->ParameterAt(index); case Slot::LOCAL: return frame_->LocalAt(index); case Slot::CONTEXT: { // Follow the context chain if necessary. ASSERT(!tmp.is(rsi)); // do not overwrite context register Register context = rsi; int chain_length = scope()->ContextChainLength(slot->var()->scope()); for (int i = 0; i < chain_length; i++) { // Load the closure. // (All contexts, even 'with' contexts, have a closure, // and it is the same for all contexts inside a function. // There is no need to go to the function context first.) __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); context = tmp; } // We may have a 'with' context now. Get the function context. // (In fact this mov may never be the needed, since the scope analysis // may not permit a direct context access in this case and thus we are // always at a function context. However it is safe to dereference be- // cause the function context of a function context is itself. Before // deleting this mov we should try to create a counter-example first, // though...) __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp, index); } default: UNREACHABLE(); return Operand(rsp, 0); } } Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, Result tmp, JumpTarget* slow) { ASSERT(slot->type() == Slot::CONTEXT); ASSERT(tmp.is_register()); Register context = rsi; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } } // Check that last extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp.reg(), slot->index()); } // Emit code to load the value of an expression to the top of the // frame. If the expression is boolean-valued it may be compiled (or // partially compiled) into control flow to the control destination. // If force_control is true, control flow is forced. void CodeGenerator::LoadCondition(Expression* expr, ControlDestination* dest, bool force_control) { ASSERT(!in_spilled_code()); int original_height = frame_->height(); { CodeGenState new_state(this, dest); Visit(expr); // If we hit a stack overflow, we may not have actually visited // the expression. In that case, we ensure that we have a // valid-looking frame state because we will continue to generate // code as we unwind the C++ stack. // // It's possible to have both a stack overflow and a valid frame // state (eg, a subexpression overflowed, visiting it returned // with a dummied frame state, and visiting this expression // returned with a normal-looking state). if (HasStackOverflow() && !dest->is_used() && frame_->height() == original_height) { dest->Goto(true); } } if (force_control && !dest->is_used()) { // Convert the TOS value into flow to the control destination. ToBoolean(dest); } ASSERT(!(force_control && !dest->is_used())); ASSERT(dest->is_used() || frame_->height() == original_height + 1); } void CodeGenerator::LoadAndSpill(Expression* expression) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Load(expression); frame_->SpillAll(); set_in_spilled_code(true); } void CodeGenerator::Load(Expression* expr) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(!in_spilled_code()); JumpTarget true_target; JumpTarget false_target; ControlDestination dest(&true_target, &false_target, true); LoadCondition(expr, &dest, false); if (dest.false_was_fall_through()) { // The false target was just bound. JumpTarget loaded; frame_->Push(Factory::false_value()); // There may be dangling jumps to the true target. if (true_target.is_linked()) { loaded.Jump(); true_target.Bind(); frame_->Push(Factory::true_value()); loaded.Bind(); } } else if (dest.is_used()) { // There is true, and possibly false, control flow (with true as // the fall through). JumpTarget loaded; frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); false_target.Bind(); frame_->Push(Factory::false_value()); loaded.Bind(); } } else { // We have a valid value on top of the frame, but we still may // have dangling jumps to the true and false targets from nested // subexpressions (eg, the left subexpressions of the // short-circuited boolean operators). ASSERT(has_valid_frame()); if (true_target.is_linked() || false_target.is_linked()) { JumpTarget loaded; loaded.Jump(); // Don't lose the current TOS. if (true_target.is_linked()) { true_target.Bind(); frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); } } if (false_target.is_linked()) { false_target.Bind(); frame_->Push(Factory::false_value()); } loaded.Bind(); } } ASSERT(has_valid_frame()); ASSERT(frame_->height() == original_height + 1); } void CodeGenerator::LoadGlobal() { if (in_spilled_code()) { frame_->EmitPush(GlobalObjectOperand()); } else { Result temp = allocator_->Allocate(); __ movq(temp.reg(), GlobalObjectOperand()); frame_->Push(&temp); } } void CodeGenerator::LoadGlobalReceiver() { Result temp = allocator_->Allocate(); Register reg = temp.reg(); __ movq(reg, GlobalObjectOperand()); __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); frame_->Push(&temp); } void CodeGenerator::LoadTypeofExpression(Expression* expr) { // Special handling of identifiers as subexpressions of typeof. Variable* variable = expr->AsVariableProxy()->AsVariable(); if (variable != NULL && !variable->is_this() && variable->is_global()) { // For a global variable we build the property reference // . and perform a (regular non-contextual) property // load to make sure we do not get reference errors. Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); Literal key(variable->name()); Property property(&global, &key, RelocInfo::kNoPosition); Reference ref(this, &property); ref.GetValue(); } else if (variable != NULL && variable->AsSlot() != NULL) { // For a variable that rewrites to a slot, we signal it is the immediate // subexpression of a typeof. LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); } else { // Anything else can be handled normally. Load(expr); } } ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; ASSERT(scope()->arguments_shadow() != NULL); // We don't want to do lazy arguments allocation for functions that // have heap-allocated contexts, because it interfers with the // uninitialized const tracking in the context objects. return (scope()->num_heap_slots() > 0) ? EAGER_ARGUMENTS_ALLOCATION : LAZY_ARGUMENTS_ALLOCATION; } Result CodeGenerator::StoreArgumentsObject(bool initial) { ArgumentsAllocationMode mode = ArgumentsMode(); ASSERT(mode != NO_ARGUMENTS_ALLOCATION); Comment cmnt(masm_, "[ store arguments object"); if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { // When using lazy arguments allocation, we store the arguments marker value // as a sentinel indicating that the arguments object hasn't been // allocated yet. frame_->Push(Factory::arguments_marker()); } else { ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); frame_->PushFunction(); frame_->PushReceiverSlotAddress(); frame_->Push(Smi::FromInt(scope()->num_parameters())); Result result = frame_->CallStub(&stub, 3); frame_->Push(&result); } Variable* arguments = scope()->arguments(); Variable* shadow = scope()->arguments_shadow(); ASSERT(arguments != NULL && arguments->AsSlot() != NULL); ASSERT(shadow != NULL && shadow->AsSlot() != NULL); JumpTarget done; bool skip_arguments = false; if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { // We have to skip storing into the arguments slot if it has // already been written to. This can happen if the a function // has a local variable named 'arguments'. LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF); Result probe = frame_->Pop(); if (probe.is_constant()) { // We have to skip updating the arguments object if it has // been assigned a proper value. skip_arguments = !probe.handle()->IsArgumentsMarker(); } else { __ CompareRoot(probe.reg(), Heap::kArgumentsMarkerRootIndex); probe.Unuse(); done.Branch(not_equal); } } if (!skip_arguments) { StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); } StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); return frame_->Pop(); } //------------------------------------------------------------------------------ // CodeGenerator implementation of variables, lookups, and stores. Reference::Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get) : cgen_(cgen), expression_(expression), type_(ILLEGAL), persist_after_get_(persist_after_get) { cgen->LoadReference(this); } Reference::~Reference() { ASSERT(is_unloaded() || is_illegal()); } void CodeGenerator::LoadReference(Reference* ref) { // References are loaded from both spilled and unspilled code. Set the // state to unspilled to allow that (and explicitly spill after // construction at the construction sites). bool was_in_spilled_code = in_spilled_code_; in_spilled_code_ = false; Comment cmnt(masm_, "[ LoadReference"); Expression* e = ref->expression(); Property* property = e->AsProperty(); Variable* var = e->AsVariableProxy()->AsVariable(); if (property != NULL) { // The expression is either a property or a variable proxy that rewrites // to a property. Load(property->obj()); if (property->key()->IsPropertyName()) { ref->set_type(Reference::NAMED); } else { Load(property->key()); ref->set_type(Reference::KEYED); } } else if (var != NULL) { // The expression is a variable proxy that does not rewrite to a // property. Global variables are treated as named property references. if (var->is_global()) { // If rax is free, the register allocator prefers it. Thus the code // generator will load the global object into rax, which is where // LoadIC wants it. Most uses of Reference call LoadIC directly // after the reference is created. frame_->Spill(rax); LoadGlobal(); ref->set_type(Reference::NAMED); } else { ASSERT(var->AsSlot() != NULL); ref->set_type(Reference::SLOT); } } else { // Anything else is a runtime error. Load(e); frame_->CallRuntime(Runtime::kThrowReferenceError, 1); } in_spilled_code_ = was_in_spilled_code; } void CodeGenerator::UnloadReference(Reference* ref) { // Pop a reference from the stack while preserving TOS. Comment cmnt(masm_, "[ UnloadReference"); frame_->Nip(ref->size()); ref->set_unloaded(); } // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and // convert it to a boolean in the condition code register or jump to // 'false_target'/'true_target' as appropriate. void CodeGenerator::ToBoolean(ControlDestination* dest) { Comment cmnt(masm_, "[ ToBoolean"); // The value to convert should be popped from the frame. Result value = frame_->Pop(); value.ToRegister(); if (value.is_number()) { // Fast case if TypeInfo indicates only numbers. if (FLAG_debug_code) { __ AbortIfNotNumber(value.reg()); } // Smi => false iff zero. __ SmiCompare(value.reg(), Smi::FromInt(0)); if (value.is_smi()) { value.Unuse(); dest->Split(not_zero); } else { dest->false_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(value.reg()); dest->true_target()->Branch(is_smi); __ xorpd(xmm0, xmm0); __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset)); value.Unuse(); dest->Split(not_zero); } } else { // Fast case checks. // 'false' => false. __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex); dest->false_target()->Branch(equal); // 'true' => true. __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex); dest->true_target()->Branch(equal); // 'undefined' => false. __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex); dest->false_target()->Branch(equal); // Smi => false iff zero. __ SmiCompare(value.reg(), Smi::FromInt(0)); dest->false_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(value.reg()); dest->true_target()->Branch(is_smi); // Call the stub for all other cases. frame_->Push(&value); // Undo the Pop() from above. ToBooleanStub stub; Result temp = frame_->CallStub(&stub, 1); // Convert the result to a condition code. __ testq(temp.reg(), temp.reg()); temp.Unuse(); dest->Split(not_equal); } } // Call the specialized stub for a binary operation. class DeferredInlineBinaryOperation: public DeferredCode { public: DeferredInlineBinaryOperation(Token::Value op, Register dst, Register left, Register right, OverwriteMode mode) : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { set_comment("[ DeferredInlineBinaryOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register left_; Register right_; OverwriteMode mode_; }; void DeferredInlineBinaryOperation::Generate() { Label done; if ((op_ == Token::ADD) || (op_ == Token::SUB) || (op_ == Token::MUL) || (op_ == Token::DIV)) { Label call_runtime; Label left_smi, right_smi, load_right, do_op; __ JumpIfSmi(left_, &left_smi); __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); if (mode_ == OVERWRITE_LEFT) { __ movq(dst_, left_); } __ jmp(&load_right); __ bind(&left_smi); __ SmiToInteger32(left_, left_); __ cvtlsi2sd(xmm0, left_); __ Integer32ToSmi(left_, left_); if (mode_ == OVERWRITE_LEFT) { Label alloc_failure; __ AllocateHeapNumber(dst_, no_reg, &call_runtime); } __ bind(&load_right); __ JumpIfSmi(right_, &right_smi); __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); if (mode_ == OVERWRITE_RIGHT) { __ movq(dst_, right_); } else if (mode_ == NO_OVERWRITE) { Label alloc_failure; __ AllocateHeapNumber(dst_, no_reg, &call_runtime); } __ jmp(&do_op); __ bind(&right_smi); __ SmiToInteger32(right_, right_); __ cvtlsi2sd(xmm1, right_); __ Integer32ToSmi(right_, right_); if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { Label alloc_failure; __ AllocateHeapNumber(dst_, no_reg, &call_runtime); } __ bind(&do_op); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); __ jmp(&done); __ bind(&call_runtime); } GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, left_, right_); if (!dst_.is(rax)) __ movq(dst_, rax); __ bind(&done); } static TypeInfo CalculateTypeInfo(TypeInfo operands_type, Token::Value op, const Result& right, const Result& left) { // Set TypeInfo of result according to the operation performed. // We rely on the fact that smis have a 32 bit payload on x64. STATIC_ASSERT(kSmiValueSize == 32); switch (op) { case Token::COMMA: return right.type_info(); case Token::OR: case Token::AND: // Result type can be either of the two input types. return operands_type; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: // Result is always a smi. return TypeInfo::Smi(); case Token::SAR: case Token::SHL: // Result is always a smi. return TypeInfo::Smi(); case Token::SHR: // Result of x >>> y is always a smi if masked y >= 1, otherwise a number. return (right.is_constant() && right.handle()->IsSmi() && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) ? TypeInfo::Smi() : TypeInfo::Number(); case Token::ADD: if (operands_type.IsNumber()) { return TypeInfo::Number(); } else if (left.type_info().IsString() || right.type_info().IsString()) { return TypeInfo::String(); } else { return TypeInfo::Unknown(); } case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: // Result is always a number. return TypeInfo::Number(); default: UNREACHABLE(); } UNREACHABLE(); return TypeInfo::Unknown(); } void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, OverwriteMode overwrite_mode) { Comment cmnt(masm_, "[ BinaryOperation"); Token::Value op = expr->op(); Comment cmnt_token(masm_, Token::String(op)); if (op == Token::COMMA) { // Simply discard left value. frame_->Nip(1); return; } Result right = frame_->Pop(); Result left = frame_->Pop(); if (op == Token::ADD) { const bool left_is_string = left.type_info().IsString(); const bool right_is_string = right.type_info().IsString(); // Make sure constant strings have string type info. ASSERT(!(left.is_constant() && left.handle()->IsString()) || left_is_string); ASSERT(!(right.is_constant() && right.handle()->IsString()) || right_is_string); if (left_is_string || right_is_string) { frame_->Push(&left); frame_->Push(&right); Result answer; if (left_is_string) { if (right_is_string) { StringAddStub stub(NO_STRING_CHECK_IN_STUB); answer = frame_->CallStub(&stub, 2); } else { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); } } else if (right_is_string) { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); } answer.set_type_info(TypeInfo::String()); frame_->Push(&answer); return; } // Neither operand is known to be a string. } bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); bool right_is_non_smi_constant = right.is_constant() && !right.handle()->IsSmi(); if (left_is_smi_constant && right_is_smi_constant) { // Compute the constant result at compile time, and leave it on the frame. int left_int = Smi::cast(*left.handle())->value(); int right_int = Smi::cast(*right.handle())->value(); if (FoldConstantSmis(op, left_int, right_int)) return; } // Get number type of left and right sub-expressions. TypeInfo operands_type = TypeInfo::Combine(left.type_info(), right.type_info()); TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); Result answer; if (left_is_non_smi_constant || right_is_non_smi_constant) { // Go straight to the slow case, with no smi code. GenericBinaryOpStub stub(op, overwrite_mode, NO_SMI_CODE_IN_STUB, operands_type); answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); } else if (right_is_smi_constant) { answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), false, overwrite_mode); } else if (left_is_smi_constant) { answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), true, overwrite_mode); } else { // Set the flags based on the operation, type and loop nesting level. // Bit operations always assume they likely operate on Smis. Still only // generate the inline Smi check code if this operation is part of a loop. // For all other operations only inline the Smi check code for likely smis // if the operation is part of a loop. if (loop_nesting() > 0 && (Token::IsBitOp(op) || operands_type.IsInteger32() || expr->type()->IsLikelySmi())) { answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); } else { GenericBinaryOpStub stub(op, overwrite_mode, NO_GENERIC_BINARY_FLAGS, operands_type); answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); } } answer.set_type_info(result_type); frame_->Push(&answer); } bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { Object* answer_object = Heap::undefined_value(); switch (op) { case Token::ADD: // Use intptr_t to detect overflow of 32-bit int. if (Smi::IsValid(static_cast(left) + right)) { answer_object = Smi::FromInt(left + right); } break; case Token::SUB: // Use intptr_t to detect overflow of 32-bit int. if (Smi::IsValid(static_cast(left) - right)) { answer_object = Smi::FromInt(left - right); } break; case Token::MUL: { double answer = static_cast(left) * right; if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { // If the product is zero and the non-zero factor is negative, // the spec requires us to return floating point negative zero. if (answer != 0 || (left >= 0 && right >= 0)) { answer_object = Smi::FromInt(static_cast(answer)); } } } break; case Token::DIV: case Token::MOD: break; case Token::BIT_OR: answer_object = Smi::FromInt(left | right); break; case Token::BIT_AND: answer_object = Smi::FromInt(left & right); break; case Token::BIT_XOR: answer_object = Smi::FromInt(left ^ right); break; case Token::SHL: { int shift_amount = right & 0x1F; if (Smi::IsValid(left << shift_amount)) { answer_object = Smi::FromInt(left << shift_amount); } break; } case Token::SHR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; unsigned_left >>= shift_amount; if (unsigned_left <= static_cast(Smi::kMaxValue)) { answer_object = Smi::FromInt(unsigned_left); } break; } case Token::SAR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; if (left < 0) { // Perform arithmetic shift of a negative number by // complementing number, logical shifting, complementing again. unsigned_left = ~unsigned_left; unsigned_left >>= shift_amount; unsigned_left = ~unsigned_left; } else { unsigned_left >>= shift_amount; } ASSERT(Smi::IsValid(static_cast(unsigned_left))); answer_object = Smi::FromInt(static_cast(unsigned_left)); break; } default: UNREACHABLE(); break; } if (answer_object == Heap::undefined_value()) { return false; } frame_->Push(Handle(answer_object)); return true; } void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left, Result* right, JumpTarget* both_smi) { TypeInfo left_info = left->type_info(); TypeInfo right_info = right->type_info(); if (left_info.IsDouble() || left_info.IsString() || right_info.IsDouble() || right_info.IsString()) { // We know that left and right are not both smi. Don't do any tests. return; } if (left->reg().is(right->reg())) { if (!left_info.IsSmi()) { Condition is_smi = masm()->CheckSmi(left->reg()); both_smi->Branch(is_smi); } else { if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); left->Unuse(); right->Unuse(); both_smi->Jump(); } } else if (!left_info.IsSmi()) { if (!right_info.IsSmi()) { Condition is_smi = masm()->CheckBothSmi(left->reg(), right->reg()); both_smi->Branch(is_smi); } else { Condition is_smi = masm()->CheckSmi(left->reg()); both_smi->Branch(is_smi); } } else { if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); if (!right_info.IsSmi()) { Condition is_smi = masm()->CheckSmi(right->reg()); both_smi->Branch(is_smi); } else { if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); left->Unuse(); right->Unuse(); both_smi->Jump(); } } } void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg, TypeInfo type, DeferredCode* deferred) { if (!type.IsSmi()) { __ JumpIfNotSmi(reg, deferred->entry_label()); } if (FLAG_debug_code) { __ AbortIfNotSmi(reg); } } void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, Register right, TypeInfo left_info, TypeInfo right_info, DeferredCode* deferred) { if (!left_info.IsSmi() && !right_info.IsSmi()) { __ JumpIfNotBothSmi(left, right, deferred->entry_label()); } else if (!left_info.IsSmi()) { __ JumpIfNotSmi(left, deferred->entry_label()); } else if (!right_info.IsSmi()) { __ JumpIfNotSmi(right, deferred->entry_label()); } if (FLAG_debug_code) { __ AbortIfNotSmi(left); __ AbortIfNotSmi(right); } } // Implements a binary operation using a deferred code object and some // inline code to operate on smis quickly. Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, Result* left, Result* right, OverwriteMode overwrite_mode) { // Copy the type info because left and right may be overwritten. TypeInfo left_type_info = left->type_info(); TypeInfo right_type_info = right->type_info(); Token::Value op = expr->op(); Result answer; // Special handling of div and mod because they use fixed registers. if (op == Token::DIV || op == Token::MOD) { // We need rax as the quotient register, rdx as the remainder // register, neither left nor right in rax or rdx, and left copied // to rax. Result quotient; Result remainder; bool left_is_in_rax = false; // Step 1: get rax for quotient. if ((left->is_register() && left->reg().is(rax)) || (right->is_register() && right->reg().is(rax))) { // One or both is in rax. Use a fresh non-rdx register for // them. Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (fresh.reg().is(rdx)) { remainder = fresh; fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); } if (left->is_register() && left->reg().is(rax)) { quotient = *left; *left = fresh; left_is_in_rax = true; } if (right->is_register() && right->reg().is(rax)) { quotient = *right; *right = fresh; } __ movq(fresh.reg(), rax); } else { // Neither left nor right is in rax. quotient = allocator_->Allocate(rax); } ASSERT(quotient.is_register() && quotient.reg().is(rax)); ASSERT(!(left->is_register() && left->reg().is(rax))); ASSERT(!(right->is_register() && right->reg().is(rax))); // Step 2: get rdx for remainder if necessary. if (!remainder.is_valid()) { if ((left->is_register() && left->reg().is(rdx)) || (right->is_register() && right->reg().is(rdx))) { Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (left->is_register() && left->reg().is(rdx)) { remainder = *left; *left = fresh; } if (right->is_register() && right->reg().is(rdx)) { remainder = *right; *right = fresh; } __ movq(fresh.reg(), rdx); } else { // Neither left nor right is in rdx. remainder = allocator_->Allocate(rdx); } } ASSERT(remainder.is_register() && remainder.reg().is(rdx)); ASSERT(!(left->is_register() && left->reg().is(rdx))); ASSERT(!(right->is_register() && right->reg().is(rdx))); left->ToRegister(); right->ToRegister(); frame_->Spill(rax); frame_->Spill(rdx); // Check that left and right are smi tagged. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, (op == Token::DIV) ? rax : rdx, left->reg(), right->reg(), overwrite_mode); JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), left_type_info, right_type_info, deferred); if (op == Token::DIV) { __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label()); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = quotient; } else { ASSERT(op == Token::MOD); __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label()); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = remainder; } ASSERT(answer.is_valid()); return answer; } // Special handling of shift operations because they use fixed // registers. if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { // Move left out of rcx if necessary. if (left->is_register() && left->reg().is(rcx)) { *left = allocator_->Allocate(); ASSERT(left->is_valid()); __ movq(left->reg(), rcx); } right->ToRegister(rcx); left->ToRegister(); ASSERT(left->is_register() && !left->reg().is(rcx)); ASSERT(right->is_register() && right->reg().is(rcx)); // We will modify right, it must be spilled. frame_->Spill(rcx); // Use a fresh answer register to avoid spilling the left operand. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Check that both operands are smis using the answer register as a // temporary. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), rcx, overwrite_mode); Label do_op; // Left operand must be unchanged in left->reg() for deferred code. // Left operand is in answer.reg(), possibly converted to int32, for // inline code. __ movq(answer.reg(), left->reg()); if (right_type_info.IsSmi()) { if (FLAG_debug_code) { __ AbortIfNotSmi(right->reg()); } // If left is not known to be a smi, check if it is. // If left is not known to be a number, and it isn't a smi, check if // it is a HeapNumber. if (!left_type_info.IsSmi()) { __ JumpIfSmi(answer.reg(), &do_op); if (!left_type_info.IsNumber()) { // Branch if not a heapnumber. __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset), Factory::heap_number_map()); deferred->Branch(not_equal); } // Load integer value into answer register using truncation. __ cvttsd2si(answer.reg(), FieldOperand(answer.reg(), HeapNumber::kValueOffset)); // Branch if we might have overflowed. // (False negative for Smi::kMinValue) __ cmpl(answer.reg(), Immediate(0x80000000)); deferred->Branch(equal); // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging. __ Integer32ToSmi(answer.reg(), answer.reg()); } else { // Fast case - both are actually smis. if (FLAG_debug_code) { __ AbortIfNotSmi(left->reg()); } } } else { JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx, left_type_info, right_type_info, deferred); } __ bind(&do_op); // Perform the operation. switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(answer.reg(), answer.reg(), rcx); break; case Token::SHR: { __ SmiShiftLogicalRight(answer.reg(), answer.reg(), rcx, deferred->entry_label()); break; } case Token::SHL: { __ SmiShiftLeft(answer.reg(), answer.reg(), rcx); break; } default: UNREACHABLE(); } deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } // Handle the other binary operations. left->ToRegister(); right->ToRegister(); // A newly allocated register answer is used to hold the answer. The // registers containing left and right are not modified so they don't // need to be spilled in the fast case. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Perform the smi tag check. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), right->reg(), overwrite_mode); JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), left_type_info, right_type_info, deferred); switch (op) { case Token::ADD: __ SmiAdd(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; case Token::SUB: __ SmiSub(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; case Token::MUL: { __ SmiMul(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; } case Token::BIT_OR: __ SmiOr(answer.reg(), left->reg(), right->reg()); break; case Token::BIT_AND: __ SmiAnd(answer.reg(), left->reg(), right->reg()); break; case Token::BIT_XOR: __ SmiXor(answer.reg(), left->reg(), right->reg()); break; default: UNREACHABLE(); break; } deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } // Call the appropriate binary operation stub to compute src op value // and leave the result in dst. class DeferredInlineSmiOperation: public DeferredCode { public: DeferredInlineSmiOperation(Token::Value op, Register dst, Register src, Smi* value, OverwriteMode overwrite_mode) : op_(op), dst_(dst), src_(src), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register src_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperation::Generate() { // For mod we don't generate all the Smi code inline. GenericBinaryOpStub stub( op_, overwrite_mode_, (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, src_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } // Call the appropriate binary operation stub to compute value op src // and leave the result in dst. class DeferredInlineSmiOperationReversed: public DeferredCode { public: DeferredInlineSmiOperationReversed(Token::Value op, Register dst, Smi* value, Register src, OverwriteMode overwrite_mode) : op_(op), dst_(dst), value_(value), src_(src), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperationReversed"); } virtual void Generate(); private: Token::Value op_; Register dst_; Smi* value_; Register src_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperationReversed::Generate() { GenericBinaryOpStub stub( op_, overwrite_mode_, NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, value_, src_); if (!dst_.is(rax)) __ movq(dst_, rax); } class DeferredInlineSmiAdd: public DeferredCode { public: DeferredInlineSmiAdd(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAdd"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAdd::Generate() { GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } // The result of value + src is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAddReversed: public DeferredCode { public: DeferredInlineSmiAddReversed(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAddReversed"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAddReversed::Generate() { GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, dst_); if (!dst_.is(rax)) __ movq(dst_, rax); } class DeferredInlineSmiSub: public DeferredCode { public: DeferredInlineSmiSub(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiSub"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiSub::Generate() { GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, Result* operand, Handle value, bool reversed, OverwriteMode overwrite_mode) { // Generate inline code for a binary operation when one of the // operands is a constant smi. Consumes the argument "operand". if (IsUnsafeSmi(value)) { Result unsafe_operand(value); if (reversed) { return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, overwrite_mode); } else { return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, overwrite_mode); } } // Get the literal value. Smi* smi_value = Smi::cast(*value); int int_value = smi_value->value(); Token::Value op = expr->op(); Result answer; switch (op) { case Token::ADD: { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiAddReversed(operand->reg(), smi_value, overwrite_mode); } else { deferred = new DeferredInlineSmiAdd(operand->reg(), smi_value, overwrite_mode); } JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); __ SmiAddConstant(operand->reg(), operand->reg(), smi_value, deferred->entry_label()); deferred->BindExit(); answer = *operand; break; } case Token::SUB: { if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, overwrite_mode); } else { operand->ToRegister(); frame_->Spill(operand->reg()); answer = *operand; DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); // A smi currently fits in a 32-bit Immediate. __ SmiSubConstant(operand->reg(), operand->reg(), smi_value, deferred->entry_label()); deferred->BindExit(); operand->Unuse(); } break; } case Token::SAR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); __ SmiShiftArithmeticRightConstant(operand->reg(), operand->reg(), shift_value); deferred->BindExit(); answer = *operand; } break; case Token::SHR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); __ SmiShiftLogicalRightConstant(answer.reg(), operand->reg(), shift_value, deferred->entry_label()); deferred->BindExit(); operand->Unuse(); } break; case Token::SHL: if (reversed) { operand->ToRegister(); // We need rcx to be available to hold operand, and to be spilled. // SmiShiftLeft implicitly modifies rcx. if (operand->reg().is(rcx)) { frame_->Spill(operand->reg()); answer = allocator()->Allocate(); } else { Result rcx_reg = allocator()->Allocate(rcx); // answer must not be rcx. answer = allocator()->Allocate(); // rcx_reg goes out of scope. } DeferredInlineSmiOperationReversed* deferred = new DeferredInlineSmiOperationReversed(op, answer.reg(), smi_value, operand->reg(), overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); __ Move(answer.reg(), smi_value); __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg()); operand->Unuse(); deferred->BindExit(); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); if (shift_value == 0) { // Spill operand so it can be overwritten in the slow case. frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); deferred->BindExit(); answer = *operand; } else { // Use a fresh temporary for nonzero shift values. answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); __ SmiShiftLeftConstant(answer.reg(), operand->reg(), shift_value); deferred->BindExit(); operand->Unuse(); } } break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: { operand->ToRegister(); frame_->Spill(operand->reg()); if (reversed) { // Bit operations with a constant smi are commutative. // We can swap left and right operands with no problem. // Swap left and right overwrite modes. 0->0, 1->2, 2->1. overwrite_mode = static_cast((2 * overwrite_mode) % 3); } DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), deferred); if (op == Token::BIT_AND) { __ SmiAndConstant(operand->reg(), operand->reg(), smi_value); } else if (op == Token::BIT_XOR) { if (int_value != 0) { __ SmiXorConstant(operand->reg(), operand->reg(), smi_value); } } else { ASSERT(op == Token::BIT_OR); if (int_value != 0) { __ SmiOrConstant(operand->reg(), operand->reg(), smi_value); } } deferred->BindExit(); answer = *operand; break; } // Generate inline code for mod of powers of 2 and negative powers of 2. case Token::MOD: if (!reversed && int_value != 0 && (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ JumpUnlessNonNegativeSmi(operand->reg(), deferred->entry_label()); if (int_value < 0) int_value = -int_value; if (int_value == 1) { __ Move(operand->reg(), Smi::FromInt(0)); } else { __ SmiAndConstant(operand->reg(), operand->reg(), Smi::FromInt(int_value - 1)); } deferred->BindExit(); answer = *operand; break; // This break only applies if we generated code for MOD. } // Fall through if we did not find a power of 2 on the right hand side! // The next case must be the default. default: { Result constant_operand(value); if (reversed) { answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, overwrite_mode); } else { answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, overwrite_mode); } break; } } ASSERT(answer.is_valid()); return answer; } static bool CouldBeNaN(const Result& result) { if (result.type_info().IsSmi()) return false; if (result.type_info().IsInteger32()) return false; if (!result.is_constant()) return true; if (!result.handle()->IsHeapNumber()) return false; return isnan(HeapNumber::cast(*result.handle())->value()); } // Convert from signed to unsigned comparison to match the way EFLAGS are set // by FPU and XMM compare instructions. static Condition DoubleCondition(Condition cc) { switch (cc) { case less: return below; case equal: return equal; case less_equal: return below_equal; case greater: return above; case greater_equal: return above_equal; default: UNREACHABLE(); } UNREACHABLE(); return equal; } static CompareFlags ComputeCompareFlags(NaNInformation nan_info, bool inline_number_compare) { CompareFlags flags = NO_SMI_COMPARE_IN_STUB; if (nan_info == kCantBothBeNaN) { flags = static_cast(flags | CANT_BOTH_BE_NAN); } if (inline_number_compare) { flags = static_cast(flags | NO_NUMBER_COMPARE_IN_STUB); } return flags; } void CodeGenerator::Comparison(AstNode* node, Condition cc, bool strict, ControlDestination* dest) { // Strict only makes sense for equality comparisons. ASSERT(!strict || cc == equal); Result left_side; Result right_side; // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. if (cc == greater || cc == less_equal) { cc = ReverseCondition(cc); left_side = frame_->Pop(); right_side = frame_->Pop(); } else { right_side = frame_->Pop(); left_side = frame_->Pop(); } ASSERT(cc == less || cc == equal || cc == greater_equal); // If either side is a constant smi, optimize the comparison. bool left_side_constant_smi = false; bool left_side_constant_null = false; bool left_side_constant_1_char_string = false; if (left_side.is_constant()) { left_side_constant_smi = left_side.handle()->IsSmi(); left_side_constant_null = left_side.handle()->IsNull(); left_side_constant_1_char_string = (left_side.handle()->IsString() && String::cast(*left_side.handle())->length() == 1 && String::cast(*left_side.handle())->IsAsciiRepresentation()); } bool right_side_constant_smi = false; bool right_side_constant_null = false; bool right_side_constant_1_char_string = false; if (right_side.is_constant()) { right_side_constant_smi = right_side.handle()->IsSmi(); right_side_constant_null = right_side.handle()->IsNull(); right_side_constant_1_char_string = (right_side.handle()->IsString() && String::cast(*right_side.handle())->length() == 1 && String::cast(*right_side.handle())->IsAsciiRepresentation()); } if (left_side_constant_smi || right_side_constant_smi) { bool is_loop_condition = (node->AsExpression() != NULL) && node->AsExpression()->is_loop_condition(); ConstantSmiComparison(cc, strict, dest, &left_side, &right_side, left_side_constant_smi, right_side_constant_smi, is_loop_condition); } else if (left_side_constant_1_char_string || right_side_constant_1_char_string) { if (left_side_constant_1_char_string && right_side_constant_1_char_string) { // Trivial case, comparing two constants. int left_value = String::cast(*left_side.handle())->Get(0); int right_value = String::cast(*right_side.handle())->Get(0); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant 1 character string. // If left side is a constant 1-character string, reverse the operands. // Since one side is a constant string, conversion order does not matter. if (left_side_constant_1_char_string) { Result temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may reintroduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant string, inlining the case // where both sides are strings. left_side.ToRegister(); // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_not_string, is_string; Register left_reg = left_side.reg(); Handle right_val = right_side.handle(); ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); Condition is_smi = masm()->CheckSmi(left_reg); is_not_string.Branch(is_smi, &left_side); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), FieldOperand(left_reg, HeapObject::kMapOffset)); __ movzxbl(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); // If we are testing for equality then make use of the symbol shortcut. // Check if the left hand side has the same type as the right hand // side (which is always a symbol). if (cc == equal) { Label not_a_symbol; STATIC_ASSERT(kSymbolTag != 0); // Ensure that no non-strings have the symbol bit set. STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. __ j(zero, ¬_a_symbol); // They are symbols, so do identity compare. __ Cmp(left_reg, right_side.handle()); dest->true_target()->Branch(equal); dest->false_target()->Branch(not_equal); __ bind(¬_a_symbol); } // Call the compare stub if the left side is not a flat ascii string. __ andb(temp.reg(), Immediate(kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); __ cmpb(temp.reg(), Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); temp.Unuse(); is_string.Branch(equal, &left_side); // Setup and call the compare stub. is_not_string.Bind(&left_side); CompareFlags flags = static_cast(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB); CompareStub stub(cc, strict, flags); Result result = frame_->CallStub(&stub, &left_side, &right_side); result.ToRegister(); __ testq(result.reg(), result.reg()); result.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_string.Bind(&left_side); // left_side is a sequential ASCII string. ASSERT(left_side.reg().is(left_reg)); right_side = Result(right_val); Result temp2 = allocator_->Allocate(); ASSERT(temp2.is_valid()); // Test string equality and comparison. if (cc == equal) { Label comparison_done; __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), Smi::FromInt(1)); __ j(not_equal, &comparison_done); uint8_t char_value = static_cast(String::cast(*right_val)->Get(0)); __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), Immediate(char_value)); __ bind(&comparison_done); } else { __ movq(temp2.reg(), FieldOperand(left_side.reg(), String::kLengthOffset)); __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1)); Label comparison; // If the length is 0 then the subtraction gave -1 which compares less // than any character. __ j(negative, &comparison); // Otherwise load the first character. __ movzxbl(temp2.reg(), FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize)); __ bind(&comparison); // Compare the first character of the string with the // constant 1-character string. uint8_t char_value = static_cast(String::cast(*right_side.handle())->Get(0)); __ cmpb(temp2.reg(), Immediate(char_value)); Label characters_were_different; __ j(not_equal, &characters_were_different); // If the first character is the same then the long string sorts after // the short one. __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), Smi::FromInt(1)); __ bind(&characters_were_different); } temp2.Unuse(); left_side.Unuse(); right_side.Unuse(); dest->Split(cc); } } else { // Neither side is a constant Smi, constant 1-char string, or constant null. // If either side is a non-smi constant, or known to be a heap number, // skip the smi check. bool known_non_smi = (left_side.is_constant() && !left_side.handle()->IsSmi()) || (right_side.is_constant() && !right_side.handle()->IsSmi()) || left_side.type_info().IsDouble() || right_side.type_info().IsDouble(); NaNInformation nan_info = (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? kBothCouldBeNaN : kCantBothBeNaN; // Inline number comparison handling any combination of smi's and heap // numbers if: // code is in a loop // the compare operation is different from equal // compare is not a for-loop comparison // The reason for excluding equal is that it will most likely be done // with smi's (not heap numbers) and the code to comparing smi's is inlined // separately. The same reason applies for for-loop comparison which will // also most likely be smi comparisons. bool is_loop_condition = (node->AsExpression() != NULL) && node->AsExpression()->is_loop_condition(); bool inline_number_compare = loop_nesting() > 0 && cc != equal && !is_loop_condition; // Left and right needed in registers for the following code. left_side.ToRegister(); right_side.ToRegister(); if (known_non_smi) { // Inlined equality check: // If at least one of the objects is not NaN, then if the objects // are identical, they are equal. if (nan_info == kCantBothBeNaN && cc == equal) { __ cmpq(left_side.reg(), right_side.reg()); dest->true_target()->Branch(equal); } // Inlined number comparison: if (inline_number_compare) { GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); } // End of in-line compare, call out to the compare stub. Don't include // number comparison in the stub if it was inlined. CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare); CompareStub stub(cc, strict, flags); Result answer = frame_->CallStub(&stub, &left_side, &right_side); __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag. answer.Unuse(); dest->Split(cc); } else { // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Register left_reg = left_side.reg(); Register right_reg = right_side.reg(); // In-line check for comparing two smis. JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi); if (has_valid_frame()) { // Inline the equality check if both operands can't be a NaN. If both // objects are the same they are equal. if (nan_info == kCantBothBeNaN && cc == equal) { __ cmpq(left_side.reg(), right_side.reg()); dest->true_target()->Branch(equal); } // Inlined number comparison: if (inline_number_compare) { GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); } // End of in-line compare, call out to the compare stub. Don't include // number comparison in the stub if it was inlined. CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare); CompareStub stub(cc, strict, flags); Result answer = frame_->CallStub(&stub, &left_side, &right_side); __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags. answer.Unuse(); if (is_smi.is_linked()) { dest->true_target()->Branch(cc); dest->false_target()->Jump(); } else { dest->Split(cc); } } if (is_smi.is_linked()) { is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_reg); __ SmiCompare(left_side.reg(), right_side.reg()); right_side.Unuse(); left_side.Unuse(); dest->Split(cc); } } } } void CodeGenerator::ConstantSmiComparison(Condition cc, bool strict, ControlDestination* dest, Result* left_side, Result* right_side, bool left_side_constant_smi, bool right_side_constant_smi, bool is_loop_condition) { if (left_side_constant_smi && right_side_constant_smi) { // Trivial case, comparing two constants. int left_value = Smi::cast(*left_side->handle())->value(); int right_value = Smi::cast(*right_side->handle())->value(); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant Smi. // If left side is a constant Smi, reverse the operands. // Since one side is a constant Smi, conversion order does not matter. if (left_side_constant_smi) { Result* temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may re-introduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant Smi, inlining the case // where both sides are Smis. left_side->ToRegister(); Register left_reg = left_side->reg(); Smi* constant_smi = Smi::cast(*right_side->handle()); if (left_side->is_smi()) { if (FLAG_debug_code) { __ AbortIfNotSmi(left_reg); } // Test smi equality and comparison by signed int comparison. // Both sides are smis, so we can use an Immediate. __ SmiCompare(left_reg, constant_smi); left_side->Unuse(); right_side->Unuse(); dest->Split(cc); } else { // Only the case where the left side could possibly be a non-smi is left. JumpTarget is_smi; if (cc == equal) { // We can do the equality comparison before the smi check. __ SmiCompare(left_reg, constant_smi); dest->true_target()->Branch(equal); Condition left_is_smi = masm_->CheckSmi(left_reg); dest->false_target()->Branch(left_is_smi); } else { // Do the smi check, then the comparison. Condition left_is_smi = masm_->CheckSmi(left_reg); is_smi.Branch(left_is_smi, left_side, right_side); } // Jump or fall through to here if we are comparing a non-smi to a // constant smi. If the non-smi is a heap number and this is not // a loop condition, inline the floating point code. if (!is_loop_condition) { // Right side is a constant smi and left side has been checked // not to be a smi. JumpTarget not_number; __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset), Factory::heap_number_map()); not_number.Branch(not_equal, left_side); __ movsd(xmm1, FieldOperand(left_reg, HeapNumber::kValueOffset)); int value = constant_smi->value(); if (value == 0) { __ xorpd(xmm0, xmm0); } else { Result temp = allocator()->Allocate(); __ movl(temp.reg(), Immediate(value)); __ cvtlsi2sd(xmm0, temp.reg()); temp.Unuse(); } __ ucomisd(xmm1, xmm0); // Jump to builtin for NaN. not_number.Branch(parity_even, left_side); left_side->Unuse(); dest->true_target()->Branch(DoubleCondition(cc)); dest->false_target()->Jump(); not_number.Bind(left_side); } // Setup and call the compare stub. CompareFlags flags = static_cast(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB); CompareStub stub(cc, strict, flags); Result result = frame_->CallStub(&stub, left_side, right_side); result.ToRegister(); __ testq(result.reg(), result.reg()); result.Unuse(); if (cc == equal) { dest->Split(cc); } else { dest->true_target()->Branch(cc); dest->false_target()->Jump(); // It is important for performance for this case to be at the end. is_smi.Bind(left_side, right_side); __ SmiCompare(left_reg, constant_smi); left_side->Unuse(); right_side->Unuse(); dest->Split(cc); } } } } // Load a comparison operand into into a XMM register. Jump to not_numbers jump // target passing the left and right result if the operand is not a number. static void LoadComparisonOperand(MacroAssembler* masm_, Result* operand, XMMRegister xmm_reg, Result* left_side, Result* right_side, JumpTarget* not_numbers) { Label done; if (operand->type_info().IsDouble()) { // Operand is known to be a heap number, just load it. __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); } else if (operand->type_info().IsSmi()) { // Operand is known to be a smi. Convert it to double and keep the original // smi. __ SmiToInteger32(kScratchRegister, operand->reg()); __ cvtlsi2sd(xmm_reg, kScratchRegister); } else { // Operand type not known, check for smi or heap number. Label smi; __ JumpIfSmi(operand->reg(), &smi); if (!operand->type_info().IsNumber()) { __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset), kScratchRegister); not_numbers->Branch(not_equal, left_side, right_side, taken); } __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&smi); // Comvert smi to float and keep the original smi. __ SmiToInteger32(kScratchRegister, operand->reg()); __ cvtlsi2sd(xmm_reg, kScratchRegister); __ jmp(&done); } __ bind(&done); } void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, Result* right_side, Condition cc, ControlDestination* dest) { ASSERT(left_side->is_register()); ASSERT(right_side->is_register()); JumpTarget not_numbers; // Load left and right operand into registers xmm0 and xmm1 and compare. LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side, ¬_numbers); LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side, ¬_numbers); __ ucomisd(xmm0, xmm1); // Bail out if a NaN is involved. not_numbers.Branch(parity_even, left_side, right_side); // Split to destination targets based on comparison. left_side->Unuse(); right_side->Unuse(); dest->true_target()->Branch(DoubleCondition(cc)); dest->false_target()->Jump(); not_numbers.Bind(left_side, right_side); } // Call the function just below TOS on the stack with the given // arguments. The receiver is the TOS. void CodeGenerator::CallWithArguments(ZoneList* args, CallFunctionFlags flags, int position) { // Push the arguments ("left-to-right") on the stack. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); frame_->SpillTop(); } // Record the position for debugging purposes. CodeForSourcePosition(position); // Use the shared code stub to call the function. InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, flags); Result answer = frame_->CallStub(&call_function, arg_count + 1); // Restore context and replace function on the stack with the // result of the stub invocation. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &answer); } void CodeGenerator::CallApplyLazy(Expression* applicand, Expression* receiver, VariableProxy* arguments, int position) { // An optimized implementation of expressions of the form // x.apply(y, arguments). // If the arguments object of the scope has not been allocated, // and x.apply is Function.prototype.apply, this optimization // just copies y and the arguments of the current function on the // stack, as receiver and arguments, and calls x. // In the implementation comments, we call x the applicand // and y the receiver. ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); ASSERT(arguments->IsArguments()); // Load applicand.apply onto the stack. This will usually // give us a megamorphic load site. Not super, but it works. Load(applicand); frame()->Dup(); Handle name = Factory::LookupAsciiSymbol("apply"); frame()->Push(name); Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); __ nop(); frame()->Push(&answer); // Load the receiver and the existing arguments object onto the // expression stack. Avoid allocating the arguments object here. Load(receiver); LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); // Emit the source position information after having loaded the // receiver and the arguments. CodeForSourcePosition(position); // Contents of frame at this point: // Frame[0]: arguments object of the current function or the hole. // Frame[1]: receiver // Frame[2]: applicand.apply // Frame[3]: applicand. // Check if the arguments object has been lazily allocated // already. If so, just use that instead of copying the arguments // from the stack. This also deals with cases where a local variable // named 'arguments' has been introduced. frame_->Dup(); Result probe = frame_->Pop(); { VirtualFrame::SpilledScope spilled_scope; Label slow, done; bool try_lazy = true; if (probe.is_constant()) { try_lazy = probe.handle()->IsArgumentsMarker(); } else { __ CompareRoot(probe.reg(), Heap::kArgumentsMarkerRootIndex); probe.Unuse(); __ j(not_equal, &slow); } if (try_lazy) { Label build_args; // Get rid of the arguments object probe. frame_->Drop(); // Can be called on a spilled frame. // Stack now has 3 elements on it. // Contents of stack at this point: // rsp[0]: receiver // rsp[1]: applicand.apply // rsp[2]: applicand. // Check that the receiver really is a JavaScript object. __ movq(rax, Operand(rsp, 0)); Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, &build_args); // We allow all JSObjects including JSFunctions. As long as // JS_FUNCTION_TYPE is the last instance type and it is right // after LAST_JS_OBJECT_TYPE, we do not have to check the upper // bound. STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &build_args); // Check that applicand.apply is Function.prototype.apply. __ movq(rax, Operand(rsp, kPointerSize)); is_smi = masm_->CheckSmi(rax); __ j(is_smi, &build_args); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &build_args); __ movq(rcx, FieldOperand(rax, JSFunction::kCodeEntryOffset)); __ subq(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); Handle apply_code(Builtins::builtin(Builtins::FunctionApply)); __ Cmp(rcx, apply_code); __ j(not_equal, &build_args); // Check that applicand is a function. __ movq(rdi, Operand(rsp, 2 * kPointerSize)); is_smi = masm_->CheckSmi(rdi); __ j(is_smi, &build_args); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &build_args); // Copy the arguments to this function possibly from the // adaptor frame below it. Label invoke, adapted; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adapted); // No arguments adaptor frame. Copy fixed number of arguments. __ Set(rax, scope()->num_parameters()); for (int i = 0; i < scope()->num_parameters(); i++) { __ push(frame_->ParameterAt(i)); } __ jmp(&invoke); // Arguments adaptor frame present. Copy arguments from there, but // avoid copying too many arguments to avoid stack overflows. __ bind(&adapted); static const uint32_t kArgumentsLimit = 1 * KB; __ SmiToInteger32(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movl(rcx, rax); __ cmpl(rax, Immediate(kArgumentsLimit)); __ j(above, &build_args); // Loop through the arguments pushing them onto the execution // stack. We don't inform the virtual frame of the push, so we don't // have to worry about getting rid of the elements from the virtual // frame. Label loop; // rcx is a small non-negative integer, due to the test above. __ testl(rcx, rcx); __ j(zero, &invoke); __ bind(&loop); __ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize)); __ decl(rcx); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ParameterCount actual(rax); __ InvokeFunction(rdi, actual, CALL_FUNCTION); // Drop applicand.apply and applicand from the stack, and push // the result of the function call, but leave the spilled frame // unchanged, with 3 elements, so it is correct when we compile the // slow-case code. __ addq(rsp, Immediate(2 * kPointerSize)); __ push(rax); // Stack now has 1 element: // rsp[0]: result __ jmp(&done); // Slow-case: Allocate the arguments object since we know it isn't // there, and fall-through to the slow-case where we call // applicand.apply. __ bind(&build_args); // Stack now has 3 elements, because we have jumped from where: // rsp[0]: receiver // rsp[1]: applicand.apply // rsp[2]: applicand. // StoreArgumentsObject requires a correct frame, and may modify it. Result arguments_object = StoreArgumentsObject(false); frame_->SpillAll(); arguments_object.ToRegister(); frame_->EmitPush(arguments_object.reg()); arguments_object.Unuse(); // Stack and frame now have 4 elements. __ bind(&slow); } // Generic computation of x.apply(y, args) with no special optimization. // Flip applicand.apply and applicand on the stack, so // applicand looks like the receiver of the applicand.apply call. // Then process it as a normal function call. __ movq(rax, Operand(rsp, 3 * kPointerSize)); __ movq(rbx, Operand(rsp, 2 * kPointerSize)); __ movq(Operand(rsp, 2 * kPointerSize), rax); __ movq(Operand(rsp, 3 * kPointerSize), rbx); CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); Result res = frame_->CallStub(&call_function, 3); // The function and its two arguments have been dropped. frame_->Drop(1); // Drop the receiver as well. res.ToRegister(); frame_->EmitPush(res.reg()); // Stack now has 1 element: // rsp[0]: result if (try_lazy) __ bind(&done); } // End of spilled scope. // Restore the context register after a call. frame_->RestoreContextRegister(); } class DeferredStackCheck: public DeferredCode { public: DeferredStackCheck() { set_comment("[ DeferredStackCheck"); } virtual void Generate(); }; void DeferredStackCheck::Generate() { StackCheckStub stub; __ CallStub(&stub); } void CodeGenerator::CheckStack() { DeferredStackCheck* deferred = new DeferredStackCheck; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); deferred->Branch(below); deferred->BindExit(); } void CodeGenerator::VisitAndSpill(Statement* statement) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Visit(statement); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatementsAndSpill(ZoneList* statements) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(in_spilled_code()); set_in_spilled_code(false); VisitStatements(statements); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); ASSERT(!has_valid_frame() || frame_->height() == original_height); } void CodeGenerator::VisitStatements(ZoneList* statements) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(!in_spilled_code()); for (int i = 0; has_valid_frame() && i < statements->length(); i++) { Visit(statements->at(i)); } ASSERT(!has_valid_frame() || frame_->height() == original_height); } void CodeGenerator::VisitBlock(Block* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ Block"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); VisitStatements(node->statements()); if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. The inevitable call // will sync frame elements to memory anyway, so we do it eagerly to // allow us to push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(rsi); // The context is the first argument. frame_->EmitPush(kScratchRegister); frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0)); frame_->EmitPush(Smi::FromInt(strict_mode_flag())); Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4); // Return value is ignored. } void CodeGenerator::VisitDeclaration(Declaration* node) { Comment cmnt(masm_, "[ Declaration"); Variable* var = node->proxy()->var(); ASSERT(var != NULL); // must have been resolved Slot* slot = var->AsSlot(); // If it was not possible to allocate the variable at compile time, // we need to "declare" it at runtime to make sure it actually // exists in the local context. if (slot != NULL && slot->type() == Slot::LOOKUP) { // Variables with a "LOOKUP" slot were introduced as non-locals // during variable resolution and must have mode DYNAMIC. ASSERT(var->is_dynamic()); // For now, just do a runtime call. Sync the virtual frame eagerly // so we can simply push the arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); __ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(kScratchRegister); // Declaration nodes are always introduced in one of two modes. ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; frame_->EmitPush(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (node->mode() == Variable::CONST) { frame_->EmitPush(Heap::kTheHoleValueRootIndex); } else if (node->fun() != NULL) { Load(node->fun()); } else { frame_->EmitPush(Smi::FromInt(0)); // no initial value! } Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); // Ignore the return value (declarations are statements). return; } ASSERT(!var->is_global()); // If we have a function or a constant, we need to initialize the variable. Expression* val = NULL; if (node->mode() == Variable::CONST) { val = new Literal(Factory::the_hole_value()); } else { val = node->fun(); // NULL if we don't have a function } if (val != NULL) { { // Set the initial value. Reference target(this, node->proxy()); Load(val); target.SetValue(NOT_CONST_INIT); // The reference is removed from the stack (preserving TOS) when // it goes out of scope. } // Get rid of the assigned value (declarations are statements). frame_->Drop(); } } void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ExpressionStatement"); CodeForStatementPosition(node); Expression* expression = node->expression(); expression->MarkAsStatement(); Load(expression); // Remove the lingering expression result from the top of stack. frame_->Drop(); } void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "// EmptyStatement"); CodeForStatementPosition(node); // nothing to do } void CodeGenerator::VisitIfStatement(IfStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ IfStatement"); // Generate different code depending on which parts of the if statement // are present or not. bool has_then_stm = node->HasThenStatement(); bool has_else_stm = node->HasElseStatement(); CodeForStatementPosition(node); JumpTarget exit; if (has_then_stm && has_else_stm) { JumpTarget then; JumpTarget else_; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Visit(node->else_statement()); // We may have dangling jumps to the then part. if (then.is_linked()) { if (has_valid_frame()) exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then target was bound, so we compile the then part first. Visit(node->then_statement()); if (else_.is_linked()) { if (has_valid_frame()) exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } } else if (has_then_stm) { ASSERT(!has_else_stm); JumpTarget then; ControlDestination dest(&then, &exit, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // then part. if (then.is_linked()) { exit.Unuse(); exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then label was bound. Visit(node->then_statement()); } } else if (has_else_stm) { ASSERT(!has_then_stm); JumpTarget else_; ControlDestination dest(&exit, &else_, false); LoadCondition(node->condition(), &dest, true); if (dest.true_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // else part. if (else_.is_linked()) { exit.Unuse(); exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } else { // The else label was bound. Visit(node->else_statement()); } } else { ASSERT(!has_then_stm && !has_else_stm); // We only care about the condition's side effects (not its value // or control flow effect). LoadCondition is called without // forcing control flow. ControlDestination dest(&exit, &exit, true); LoadCondition(node->condition(), &dest, false); if (!dest.is_used()) { // We got a value on the frame rather than (or in addition to) // control flow. frame_->Drop(); } } if (exit.is_linked()) { exit.Bind(); } } void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ContinueStatement"); CodeForStatementPosition(node); node->target()->continue_target()->Jump(); } void CodeGenerator::VisitBreakStatement(BreakStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ BreakStatement"); CodeForStatementPosition(node); node->target()->break_target()->Jump(); } void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ReturnStatement"); CodeForStatementPosition(node); Load(node->expression()); Result return_value = frame_->Pop(); masm()->positions_recorder()->WriteRecordedPositions(); if (function_return_is_shadowed_) { function_return_.Jump(&return_value); } else { frame_->PrepareForReturn(); if (function_return_.is_bound()) { // If the function return label is already bound we reuse the // code by jumping to the return site. function_return_.Jump(&return_value); } else { function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } void CodeGenerator::GenerateReturnSequence(Result* return_value) { // The return value is a live (but not currently reference counted) // reference to rax. This is safe because the current frame does not // contain a reference to rax (it is prepared for the return by spilling // all registers). if (FLAG_trace) { frame_->Push(return_value); *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); } return_value->ToRegister(rax); // Add a label for checking the size of the code used for returning. #ifdef DEBUG Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif // Leave the frame and return popping the arguments and the // receiver. frame_->Exit(); int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize; __ Ret(arguments_bytes, rcx); DeleteFrame(); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. // The shortest return sequence generated is "movq rsp, rbp; pop rbp; ret k" // with length 7 (3 + 1 + 3). const int kPadding = Assembler::kJSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning is large enough // for the debugger's requirements. ASSERT(Assembler::kJSReturnSequenceLength <= masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithEnterStatement"); CodeForStatementPosition(node); Load(node->expression()); Result context; if (node->is_catch_block()) { context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); } else { context = frame_->CallRuntime(Runtime::kPushContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and rsi agree. if (FLAG_debug_code) { __ cmpq(context.reg(), rsi); __ Assert(equal, "Runtime::NewContext should end up in rsi"); } } void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithExitStatement"); CodeForStatementPosition(node); // Pop context. __ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX)); // Update context local. frame_->SaveContextRegister(); } void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ SwitchStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); // Compile the switch value. Load(node->tag()); ZoneList* cases = node->cases(); int length = cases->length(); CaseClause* default_clause = NULL; JumpTarget next_test; // Compile the case label expressions and comparisons. Exit early // if a comparison is unconditionally true. The target next_test is // bound before the loop in order to indicate control flow to the // first comparison. next_test.Bind(); for (int i = 0; i < length && !next_test.is_unused(); i++) { CaseClause* clause = cases->at(i); // The default is not a test, but remember it for later. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); // We recycle the same target next_test for each test. Bind it if // the previous test has not done so and then unuse it for the // loop. if (next_test.is_linked()) { next_test.Bind(); } next_test.Unuse(); // Duplicate the switch value. frame_->Dup(); // Compile the label expression. Load(clause->label()); // Compare and branch to the body if true or the next test if // false. Prefer the next test as a fall through. ControlDestination dest(clause->body_target(), &next_test, false); Comparison(node, equal, true, &dest); // If the comparison fell through to the true target, jump to the // actual body. if (dest.true_was_fall_through()) { clause->body_target()->Unuse(); clause->body_target()->Jump(); } } // If there was control flow to a next test from the last one // compiled, compile a jump to the default or break target. if (!next_test.is_unused()) { if (next_test.is_linked()) { next_test.Bind(); } // Drop the switch value. frame_->Drop(); if (default_clause != NULL) { default_clause->body_target()->Jump(); } else { node->break_target()->Jump(); } } // The last instruction emitted was a jump, either to the default // clause or the break target, or else to a case body from the loop // that compiles the tests. ASSERT(!has_valid_frame()); // Compile case bodies as needed. for (int i = 0; i < length; i++) { CaseClause* clause = cases->at(i); // There are two ways to reach the body: from the corresponding // test or as the fall through of the previous body. if (clause->body_target()->is_linked() || has_valid_frame()) { if (clause->body_target()->is_linked()) { if (has_valid_frame()) { // If we have both a jump to the test and a fall through, put // a jump on the fall through path to avoid the dropping of // the switch value on the test path. The exception is the // default which has already had the switch value dropped. if (clause->is_default()) { clause->body_target()->Bind(); } else { JumpTarget body; body.Jump(); clause->body_target()->Bind(); frame_->Drop(); body.Bind(); } } else { // No fall through to worry about. clause->body_target()->Bind(); if (!clause->is_default()) { frame_->Drop(); } } } else { // Otherwise, we have only fall through. ASSERT(has_valid_frame()); } // We are now prepared to compile the body. Comment cmnt(masm_, "[ Case body"); VisitStatements(clause->statements()); } clause->body_target()->Unuse(); } // We may not have a valid frame here so bind the break target only // if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DoWhileStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); JumpTarget body(JumpTarget::BIDIRECTIONAL); IncrementLoopNesting(); ConditionAnalysis info = AnalyzeCondition(node->cond()); // Label the top of the loop for the backward jump if necessary. switch (info) { case ALWAYS_TRUE: // Use the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case ALWAYS_FALSE: // No need to label it. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); break; case DONT_KNOW: // Continue is the test, so use the backward body target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); body.Bind(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Compile the test. switch (info) { case ALWAYS_TRUE: // If control flow can fall off the end of the body, jump back // to the top and bind the break target at the exit. if (has_valid_frame()) { node->continue_target()->Jump(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case ALWAYS_FALSE: // We may have had continues or breaks in the body. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case DONT_KNOW: // We have to compile the test expression if it can be reached by // control flow falling out of the body or via continue. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { Comment cmnt(masm_, "[ DoWhileCondition"); CodeForDoWhileConditionPosition(node); ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; } DecrementLoopNesting(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitWhileStatement(WhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WhileStatement"); CodeForStatementPosition(node); // If the condition is always false and has no side effects, we do not // need to compile anything. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop with the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case DONT_KNOW: { if (test_at_bottom) { // Continue is the test at the bottom, no need to label the test // at the top. The body is a backward target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else { // Label the test at the top as the continue target. The body // is a forward-only target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: // The loop body has been labeled with the continue target. if (has_valid_frame()) { node->continue_target()->Jump(); } break; case DONT_KNOW: if (test_at_bottom) { // If we have chosen to recompile the test at the bottom, // then it is the continue target. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here and thus an invalid fall-through). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // If we have chosen not to recompile the test at the bottom, // jump back to the one at the top. if (has_valid_frame()) { node->continue_target()->Jump(); } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) { ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER); if (slot->type() == Slot::LOCAL) { frame_->SetTypeForLocalAt(slot->index(), info); } else { frame_->SetTypeForParamAt(slot->index(), info); } if (FLAG_debug_code && info.IsSmi()) { if (slot->type() == Slot::LOCAL) { frame_->PushLocalAt(slot->index()); } else { frame_->PushParameterAt(slot->index()); } Result var = frame_->Pop(); var.ToRegister(); __ AbortIfNotSmi(var.reg()); } } void CodeGenerator::GenerateFastSmiLoop(ForStatement* node) { // A fast smi loop is a for loop with an initializer // that is a simple assignment of a smi to a stack variable, // a test that is a simple test of that variable against a smi constant, // and a step that is a increment/decrement of the variable, and // where the variable isn't modified in the loop body. // This guarantees that the variable is always a smi. Variable* loop_var = node->loop_variable(); Smi* initial_value = *Handle::cast(node->init() ->StatementAsSimpleAssignment()->value()->AsLiteral()->handle()); Smi* limit_value = *Handle::cast( node->cond()->AsCompareOperation()->right()->AsLiteral()->handle()); Token::Value compare_op = node->cond()->AsCompareOperation()->op(); bool increments = node->next()->StatementAsCountOperation()->op() == Token::INC; // Check that the condition isn't initially false. bool initially_false = false; int initial_int_value = initial_value->value(); int limit_int_value = limit_value->value(); switch (compare_op) { case Token::LT: initially_false = initial_int_value >= limit_int_value; break; case Token::LTE: initially_false = initial_int_value > limit_int_value; break; case Token::GT: initially_false = initial_int_value <= limit_int_value; break; case Token::GTE: initially_false = initial_int_value < limit_int_value; break; default: UNREACHABLE(); } if (initially_false) return; // Only check loop condition at the end. Visit(node->init()); JumpTarget loop(JumpTarget::BIDIRECTIONAL); // Set type and stack height of BreakTargets. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); loop.Bind(); // Set number type of the loop variable to smi. CheckStack(); // TODO(1222600): ignore if body contains calls. SetTypeForStackSlot(loop_var->AsSlot(), TypeInfo::Smi()); Visit(node->body()); if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { CodeForStatementPosition(node); Slot* loop_var_slot = loop_var->AsSlot(); if (loop_var_slot->type() == Slot::LOCAL) { frame_->TakeLocalAt(loop_var_slot->index()); } else { ASSERT(loop_var_slot->type() == Slot::PARAMETER); frame_->TakeParameterAt(loop_var_slot->index()); } Result loop_var_result = frame_->Pop(); if (!loop_var_result.is_register()) { loop_var_result.ToRegister(); } Register loop_var_reg = loop_var_result.reg(); frame_->Spill(loop_var_reg); if (increments) { __ SmiAddConstant(loop_var_reg, loop_var_reg, Smi::FromInt(1)); } else { __ SmiSubConstant(loop_var_reg, loop_var_reg, Smi::FromInt(1)); } frame_->Push(&loop_var_result); if (loop_var_slot->type() == Slot::LOCAL) { frame_->StoreToLocalAt(loop_var_slot->index()); } else { ASSERT(loop_var_slot->type() == Slot::PARAMETER); frame_->StoreToParameterAt(loop_var_slot->index()); } frame_->Drop(); __ SmiCompare(loop_var_reg, limit_value); Condition condition; switch (compare_op) { case Token::LT: condition = less; break; case Token::LTE: condition = less_equal; break; case Token::GT: condition = greater; break; case Token::GTE: condition = greater_equal; break; default: condition = never; UNREACHABLE(); } loop.Branch(condition); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForStatement(ForStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ForStatement"); CodeForStatementPosition(node); if (node->is_fast_smi_loop()) { GenerateFastSmiLoop(node); return; } // Compile the init expression if present. if (node->init() != NULL) { Visit(node->init()); } // If the condition is always false and has no side effects, we do not // need to compile anything else. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); // Target for backward edge if no test at the bottom, otherwise // unused. JumpTarget loop(JumpTarget::BIDIRECTIONAL); // Target for backward edge if there is a test at the bottom, // otherwise used as target for test at the top. JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop. if (node->next() == NULL) { // Use the continue target if there is no update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // Otherwise use the backward loop target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } break; case DONT_KNOW: { if (test_at_bottom) { // Continue is either the update expression or the test at the // bottom, no need to label the test at the top. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else if (node->next() == NULL) { // We are not recompiling the test at the bottom and there is no // update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // We are not recompiling the test at the bottom and there is an // update expression. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // If there is an update expression, compile it if necessary. if (node->next() != NULL) { if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } // Control can reach the update by falling out of the body or by a // continue. if (has_valid_frame()) { // Record the source position of the statement as this code which // is after the code for the body actually belongs to the loop // statement and not the body. CodeForStatementPosition(node); Visit(node->next()); } } // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } break; case DONT_KNOW: if (test_at_bottom) { if (node->continue_target()->is_linked()) { // We can have dangling jumps to the continue target if there // was no update expression. node->continue_target()->Bind(); } // Control can reach the test at the bottom by falling out of // the body, by a continue in the body, or from the update // expression. if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // Otherwise, jump back to the test at the top. if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForInStatement(ForInStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ ForInStatement"); CodeForStatementPosition(node); JumpTarget primitive; JumpTarget jsobject; JumpTarget fixed_array; JumpTarget entry(JumpTarget::BIDIRECTIONAL); JumpTarget end_del_check; JumpTarget exit; // Get the object to enumerate over (converted to JSObject). LoadAndSpill(node->enumerable()); // Both SpiderMonkey and kjs ignore null and undefined in contrast // to the specification. 12.6.4 mandates a call to ToObject. frame_->EmitPop(rax); // rax: value to be iterated over __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); exit.Branch(equal); __ CompareRoot(rax, Heap::kNullValueRootIndex); exit.Branch(equal); // Stack layout in body: // [iteration counter (smi)] <- slot 0 // [length of array] <- slot 1 // [FixedArray] <- slot 2 // [Map or 0] <- slot 3 // [Object] <- slot 4 // Check if enumerable is already a JSObject // rax: value to be iterated over Condition is_smi = masm_->CheckSmi(rax); primitive.Branch(is_smi); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); jsobject.Branch(above_equal); primitive.Bind(); frame_->EmitPush(rax); frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); // function call returns the value in rax, which is where we want it below jsobject.Bind(); // Get the set of properties (as a FixedArray or Map). // rax: value to be iterated over frame_->EmitPush(rax); // Push the object being iterated over. // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. JumpTarget call_runtime; JumpTarget loop(JumpTarget::BIDIRECTIONAL); JumpTarget check_prototype; JumpTarget use_cache; __ movq(rcx, rax); loop.Bind(); // Check that there are no elements. __ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset)); __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex); call_runtime.Branch(not_equal); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in ebx for the subsequent // prototype load. __ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset)); __ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex); call_runtime.Branch(equal); // Check that there in an enum cache in the non-empty instance // descriptors. This is the case if the next enumeration index // field does not contain a smi. __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset)); is_smi = masm_->CheckSmi(rdx); call_runtime.Branch(is_smi); // For all objects but the receiver, check that the cache is empty. __ cmpq(rcx, rax); check_prototype.Branch(equal); __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset)); __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex); call_runtime.Branch(not_equal); check_prototype.Bind(); // Load the prototype from the map and loop if non-null. __ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); __ CompareRoot(rcx, Heap::kNullValueRootIndex); loop.Branch(not_equal); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); use_cache.Jump(); call_runtime.Bind(); // Call the runtime to get the property names for the object. frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a Map, we can do a fast modification check. // Otherwise, we got a FixedArray, and we have to do a slow check. // rax: map or fixed array (result from call to // Runtime::kGetPropertyNamesFast) __ movq(rdx, rax); __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ CompareRoot(rcx, Heap::kMetaMapRootIndex); fixed_array.Branch(not_equal); use_cache.Bind(); // Get enum cache // rax: map (either the result from a call to // Runtime::kGetPropertyNamesFast or has been fetched directly from // the object) __ movq(rcx, rax); __ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset)); // Get the bridge array held in the enumeration index field. __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset)); // Get the cache from the bridge array. __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); frame_->EmitPush(rax); // <- slot 3 frame_->EmitPush(rdx); // <- slot 2 __ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset)); frame_->EmitPush(rax); // <- slot 1 frame_->EmitPush(Smi::FromInt(0)); // <- slot 0 entry.Jump(); fixed_array.Bind(); // rax: fixed array (result from call to Runtime::kGetPropertyNamesFast) frame_->EmitPush(Smi::FromInt(0)); // <- slot 3 frame_->EmitPush(rax); // <- slot 2 // Push the length of the array and the initial index onto the stack. __ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset)); frame_->EmitPush(rax); // <- slot 1 frame_->EmitPush(Smi::FromInt(0)); // <- slot 0 // Condition. entry.Bind(); // Grab the current frame's height for the break and continue // targets only after all the state is pushed on the frame. node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); __ movq(rax, frame_->ElementAt(0)); // load the current count __ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length node->break_target()->Branch(below_equal); // Get the i'th entry of the array. __ movq(rdx, frame_->ElementAt(2)); SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a zero map in the // permanent slow case rax: current iteration count rbx: i'th entry // of the enum cache __ movq(rdx, frame_->ElementAt(3)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. // rax: current iteration count // rbx: i'th entry of the enum cache // rdx: expected map value __ movq(rcx, frame_->ElementAt(4)); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ cmpq(rcx, rdx); end_del_check.Branch(equal); // Convert the entry to a string (or null if it isn't a property anymore). frame_->EmitPush(frame_->ElementAt(4)); // push enumerable frame_->EmitPush(rbx); // push entry frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); __ movq(rbx, rax); // If the property has been removed while iterating, we just skip it. __ SmiCompare(rbx, Smi::FromInt(0)); node->continue_target()->Branch(equal); end_del_check.Bind(); // Store the entry in the 'each' expression and take another spin in the // loop. rdx: i'th entry of the enum cache (or string there of) frame_->EmitPush(rbx); { Reference each(this, node->each()); // Loading a reference may leave the frame in an unspilled state. frame_->SpillAll(); if (!each.is_illegal()) { if (each.size() > 0) { frame_->EmitPush(frame_->ElementAt(each.size())); each.SetValue(NOT_CONST_INIT); frame_->Drop(2); // Drop the original and the copy of the element. } else { // If the reference has size zero then we can use the value below // the reference as if it were above the reference, instead of pushing // a new copy of it above the reference. each.SetValue(NOT_CONST_INIT); frame_->Drop(); // Drop the original of the element. } } } // Unloading a reference may leave the frame in an unspilled state. frame_->SpillAll(); // Body. CheckStack(); // TODO(1222600): ignore if body contains calls. VisitAndSpill(node->body()); // Next. Reestablish a spilled frame in case we are coming here via // a continue in the body. node->continue_target()->Bind(); frame_->SpillAll(); frame_->EmitPop(rax); __ SmiAddConstant(rax, rax, Smi::FromInt(1)); frame_->EmitPush(rax); entry.Jump(); // Cleanup. No need to spill because VirtualFrame::Drop is safe for // any frame. node->break_target()->Bind(); frame_->Drop(5); // Exit. exit.Bind(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryCatchStatement"); CodeForStatementPosition(node); JumpTarget try_block; JumpTarget exit; try_block.Call(); // --- Catch block --- frame_->EmitPush(rax); // Store the caught exception in the catch variable. Variable* catch_var = node->catch_var()->var(); ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); // Remove the exception from the stack. frame_->Drop(); VisitStatementsAndSpill(node->catch_block()->statements()); if (has_valid_frame()) { exit.Jump(); } // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_CATCH_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. bool has_unlinks = false; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); has_unlinks = has_unlinks || shadows[i]->is_linked(); } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // Make sure that there's nothing left on the stack above the // handler structure. if (FLAG_debug_code) { __ movq(kScratchRegister, handler_address); __ cmpq(rsp, Operand(kScratchRegister, 0)); __ Assert(equal, "stack pointer should point to top handler"); } // If we can fall off the end of the try block, unlink from try chain. if (has_valid_frame()) { // The next handler address is on top of the frame. Unlink from // the handler list and drop the rest of this handler from the // frame. STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (has_unlinks) { exit.Jump(); } } // Generate unlink code for the (formerly) shadowing targets that // have been jumped to. Deallocate each shadow target. Result return_value; for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // Unlink from try chain; be careful not to destroy the TOS if // there is one. if (i == kReturnShadowIndex) { shadows[i]->Bind(&return_value); return_value.ToRegister(rax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that we // break from (eg, for...in) may have left stuff on the stack. __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); frame_->Forget(frame_->height() - handler_height); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { if (!function_return_is_shadowed_) frame_->PrepareForReturn(); shadows[i]->other_target()->Jump(&return_value); } else { shadows[i]->other_target()->Jump(); } } } exit.Bind(); } void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryFinallyStatement"); CodeForStatementPosition(node); // State: Used to keep track of reason for entering the finally // block. Should probably be extended to hold information for // break/continue from within the try block. enum { FALLING, THROWING, JUMPING }; JumpTarget try_block; JumpTarget finally_block; try_block.Call(); frame_->EmitPush(rax); // In case of thrown exceptions, this is where we continue. __ Move(rcx, Smi::FromInt(THROWING)); finally_block.Jump(); // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_FINALLY_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. int nof_unlinks = 0; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); if (shadows[i]->is_linked()) nof_unlinks++; } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // If we can fall off the end of the try block, unlink from the try // chain and set the state on the frame to FALLING. if (has_valid_frame()) { // The next handler address is on top of the frame. STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); // Fake a top of stack value (unneeded when FALLING) and set the // state in ecx, then jump around the unlink blocks if any. frame_->EmitPush(Heap::kUndefinedValueRootIndex); __ Move(rcx, Smi::FromInt(FALLING)); if (nof_unlinks > 0) { finally_block.Jump(); } } // Generate code to unlink and set the state for the (formerly) // shadowing targets that have been jumped to. for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // If we have come from the shadowed return, the return value is // on the virtual frame. We must preserve it until it is // pushed. if (i == kReturnShadowIndex) { Result return_value; shadows[i]->Bind(&return_value); return_value.ToRegister(rax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that // we break from (eg, for...in) may have left stuff on the // stack. __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); frame_->Forget(frame_->height() - handler_height); // Unlink this handler and drop it from the frame. STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { // If this target shadowed the function return, materialize // the return value on the stack. frame_->EmitPush(rax); } else { // Fake TOS for targets that shadowed breaks and continues. frame_->EmitPush(Heap::kUndefinedValueRootIndex); } __ Move(rcx, Smi::FromInt(JUMPING + i)); if (--nof_unlinks > 0) { // If this is not the last unlink block, jump around the next. finally_block.Jump(); } } } // --- Finally block --- finally_block.Bind(); // Push the state on the stack. frame_->EmitPush(rcx); // We keep two elements on the stack - the (possibly faked) result // and the state - while evaluating the finally block. // // Generate code for the statements in the finally block. VisitStatementsAndSpill(node->finally_block()->statements()); if (has_valid_frame()) { // Restore state and return value or faked TOS. frame_->EmitPop(rcx); frame_->EmitPop(rax); } // Generate code to jump to the right destination for all used // formerly shadowing targets. Deallocate each shadow target. for (int i = 0; i < shadows.length(); i++) { if (has_valid_frame() && shadows[i]->is_bound()) { BreakTarget* original = shadows[i]->other_target(); __ SmiCompare(rcx, Smi::FromInt(JUMPING + i)); if (i == kReturnShadowIndex) { // The return value is (already) in rax. Result return_value = allocator_->Allocate(rax); ASSERT(return_value.is_valid()); if (function_return_is_shadowed_) { original->Branch(equal, &return_value); } else { // Branch around the preparation for return which may emit // code. JumpTarget skip; skip.Branch(not_equal); frame_->PrepareForReturn(); original->Jump(&return_value); skip.Bind(); } } else { original->Branch(equal); } } } if (has_valid_frame()) { // Check if we need to rethrow the exception. JumpTarget exit; __ SmiCompare(rcx, Smi::FromInt(THROWING)); exit.Branch(not_equal); // Rethrow exception. frame_->EmitPush(rax); // undo pop from above frame_->CallRuntime(Runtime::kReThrow, 1); // Done. exit.Bind(); } } void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DebuggerStatement"); CodeForStatementPosition(node); #ifdef ENABLE_DEBUGGER_SUPPORT // Spill everything, even constants, to the frame. frame_->SpillAll(); frame_->DebugBreak(); // Ignore the return value. #endif } void CodeGenerator::InstantiateFunction( Handle function_info, bool pretenure) { // The inevitable call will sync frame elements to memory anyway, so // we do it eagerly to allow us to push the arguments directly into // place. frame_->SyncRange(0, frame_->element_count() - 1); // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && function_info->num_literals() == 0 && !pretenure) { FastNewClosureStub stub; frame_->Push(function_info); Result answer = frame_->CallStub(&stub, 1); frame_->Push(&answer); } else { // Call the runtime to instantiate the function based on the // shared function info. frame_->EmitPush(rsi); frame_->EmitPush(function_info); frame_->EmitPush(pretenure ? Factory::true_value() : Factory::false_value()); Result result = frame_->CallRuntime(Runtime::kNewClosure, 3); frame_->Push(&result); } } void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function info and instantiate it. Handle function_info = Compiler::BuildFunctionInfo(node, script()); // Check for stack-overflow exception. if (function_info.is_null()) { SetStackOverflow(); return; } InstantiateFunction(function_info, node->pretenure()); } void CodeGenerator::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* node) { Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); InstantiateFunction(node->shared_function_info(), false); } void CodeGenerator::VisitConditional(Conditional* node) { Comment cmnt(masm_, "[ Conditional"); JumpTarget then; JumpTarget else_; JumpTarget exit; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Load(node->else_expression()); if (then.is_linked()) { exit.Jump(); then.Bind(); Load(node->then_expression()); } } else { // The then target was bound, so we compile the then part first. Load(node->then_expression()); if (else_.is_linked()) { exit.Jump(); else_.Bind(); Load(node->else_expression()); } } exit.Bind(); } void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); JumpTarget slow; JumpTarget done; Result value; // Generate fast case for loading from slots that correspond to // local/global variables or arguments unless they are shadowed by // eval-introduced bindings. EmitDynamicLoadFromSlotFastCase(slot, typeof_state, &value, &slow, &done); slow.Bind(); // A runtime call is inevitable. We eagerly sync frame elements // to memory so that we can push the arguments directly into place // on top of the frame. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(kScratchRegister); if (typeof_state == INSIDE_TYPEOF) { value = frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); } else { value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2); } done.Bind(&value); frame_->Push(&value); } else if (slot->var()->mode() == Variable::CONST) { // Const slots may contain 'the hole' value (the constant hasn't been // initialized yet) which needs to be converted into the 'undefined' // value. // // We currently spill the virtual frame because constants use the // potentially unsafe direct-frame access of SlotOperand. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Load const"); JumpTarget exit; __ movq(rcx, SlotOperand(slot, rcx)); __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); exit.Branch(not_equal); __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex); exit.Bind(); frame_->EmitPush(rcx); } else if (slot->type() == Slot::PARAMETER) { frame_->PushParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->PushLocalAt(slot->index()); } else { // The other remaining slot types (LOOKUP and GLOBAL) cannot reach // here. // // The use of SlotOperand below is safe for an unspilled frame // because it will always be a context slot. ASSERT(slot->type() == Slot::CONTEXT); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), SlotOperand(slot, temp.reg())); frame_->Push(&temp); } } void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, TypeofState state) { LoadFromSlot(slot, state); // Bail out quickly if we're not using lazy arguments allocation. if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; // ... or if the slot isn't a non-parameter arguments slot. if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; // Pop the loaded value from the stack. Result value = frame_->Pop(); // If the loaded value is a constant, we know if the arguments // object has been lazily loaded yet. if (value.is_constant()) { if (value.handle()->IsArgumentsMarker()) { Result arguments = StoreArgumentsObject(false); frame_->Push(&arguments); } else { frame_->Push(&value); } return; } // The loaded value is in a register. If it is the sentinel that // indicates that we haven't loaded the arguments object yet, we // need to do it now. JumpTarget exit; __ CompareRoot(value.reg(), Heap::kArgumentsMarkerRootIndex); frame_->Push(&value); exit.Branch(not_equal); Result arguments = StoreArgumentsObject(false); frame_->SetElementAt(0, &arguments); exit.Bind(); } Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, JumpTarget* slow) { // Check that no extension objects have been created by calls to // eval from the current scope to the global scope. Register context = rsi; Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); // All non-reserved registers were available. Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } // Load next context in chain. __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(tmp.reg())) { __ movq(tmp.reg(), context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); __ bind(&next); // Terminate at global context. __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset)); __ j(equal, &fast); // Check that extension is NULL. __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal); // Load next context in chain. __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } tmp.Unuse(); // All extension objects were empty and it is safe to use a global // load IC call. LoadGlobal(); frame_->Push(slot->var()->name()); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Result answer = frame_->CallLoadIC(mode); // A test rax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test rax // instruction here. masm_->nop(); return answer; } void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, TypeofState typeof_state, Result* result, JumpTarget* slow, JumpTarget* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); done->Jump(result); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); if (potential_slot != NULL) { // Generate fast case for locals that rewrite to slots. // Allocate a fresh register to use as a temp in // ContextSlotOperandCheckExtensions and to hold the result // value. *result = allocator_->Allocate(); ASSERT(result->is_valid()); __ movq(result->reg(), ContextSlotOperandCheckExtensions(potential_slot, *result, slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex); done->Branch(not_equal, result); __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex); } done->Jump(result); } else if (rewrite != NULL) { // Generate fast case for argument loads. Property* property = rewrite->AsProperty(); if (property != NULL) { VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); Literal* key_literal = property->key()->AsLiteral(); if (obj_proxy != NULL && key_literal != NULL && obj_proxy->IsArguments() && key_literal->handle()->IsSmi()) { // Load arguments object if there are no eval-introduced // variables. Then load the argument from the arguments // object using keyed load. Result arguments = allocator()->Allocate(); ASSERT(arguments.is_valid()); __ movq(arguments.reg(), ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), arguments, slow)); frame_->Push(&arguments); frame_->Push(key_literal->handle()); *result = EmitKeyedLoad(); done->Jump(result); } } } } } void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); // For now, just do a runtime call. Since the call is inevitable, // we eagerly sync the virtual frame so we can directly push the // arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(slot->var()->name()); Result value; if (init_state == CONST_INIT) { // Same as the case for a normal store, but ignores attribute // (e.g. READ_ONLY) of context slot so that we can initialize const // properties (introduced via eval("const foo = (some expr);")). Also, // uses the current function context instead of the top context. // // Note that we must declare the foo upon entry of eval(), via a // context slot declaration, but we cannot initialize it at the same // time, because the const declaration may be at the end of the eval // code (sigh...) and the const variable may have been used before // (where its value is 'undefined'). Thus, we can only do the // initialization when we actually encounter the expression and when // the expression operands are defined and valid, and thus we need the // split into 2 operations: declaration of the context slot followed // by initialization. value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { frame_->Push(Smi::FromInt(strict_mode_flag())); value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4); } // Storing a variable must keep the (new) value on the expression // stack. This is necessary for compiling chained assignment // expressions. frame_->Push(&value); } else { ASSERT(!slot->var()->is_dynamic()); JumpTarget exit; if (init_state == CONST_INIT) { ASSERT(slot->var()->mode() == Variable::CONST); // Only the first const initialization must be executed (the slot // still contains 'the hole' value). When the assignment is executed, // the code is identical to a normal store (see below). // // We spill the frame in the code below because the direct-frame // access of SlotOperand is potentially unsafe with an unspilled // frame. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Init const"); __ movq(rcx, SlotOperand(slot, rcx)); __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); exit.Branch(not_equal); } // We must execute the store. Storing a variable must keep the (new) // value on the stack. This is necessary for compiling assignment // expressions. // // Note: We will reach here even with slot->var()->mode() == // Variable::CONST because of const declarations which will initialize // consts to 'the hole' value and by doing so, end up calling this code. if (slot->type() == Slot::PARAMETER) { frame_->StoreToParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->StoreToLocalAt(slot->index()); } else { // The other slot types (LOOKUP and GLOBAL) cannot reach here. // // The use of SlotOperand below is safe for an unspilled frame // because the slot is a context slot. ASSERT(slot->type() == Slot::CONTEXT); frame_->Dup(); Result value = frame_->Pop(); value.ToRegister(); Result start = allocator_->Allocate(); ASSERT(start.is_valid()); __ movq(SlotOperand(slot, start.reg()), value.reg()); // RecordWrite may destroy the value registers. // // TODO(204): Avoid actually spilling when the value is not // needed (probably the common case). frame_->Spill(value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); // The results start, value, and temp are unused by going out of // scope. } exit.Bind(); } } void CodeGenerator::VisitSlot(Slot* node) { Comment cmnt(masm_, "[ Slot"); LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); } void CodeGenerator::VisitVariableProxy(VariableProxy* node) { Comment cmnt(masm_, "[ VariableProxy"); Variable* var = node->var(); Expression* expr = var->rewrite(); if (expr != NULL) { Visit(expr); } else { ASSERT(var->is_global()); Reference ref(this, node); ref.GetValue(); } } void CodeGenerator::VisitLiteral(Literal* node) { Comment cmnt(masm_, "[ Literal"); frame_->Push(node->handle()); } void CodeGenerator::LoadUnsafeSmi(Register target, Handle value) { UNIMPLEMENTED(); // TODO(X64): Implement security policy for loads of smis. } bool CodeGenerator::IsUnsafeSmi(Handle value) { return false; } // Materialize the regexp literal 'node' in the literals array // 'literals' of the function. Leave the regexp boilerplate in // 'boilerplate'. class DeferredRegExpLiteral: public DeferredCode { public: DeferredRegExpLiteral(Register boilerplate, Register literals, RegExpLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredRegExpLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; RegExpLiteral* node_; }; void DeferredRegExpLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ Push(Smi::FromInt(node_->literal_index())); // RegExp pattern (2). __ Push(node_->pattern()); // RegExp flags (3). __ Push(node_->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax); } class DeferredAllocateInNewSpace: public DeferredCode { public: DeferredAllocateInNewSpace(int size, Register target, int registers_to_save = 0) : size_(size), target_(target), registers_to_save_(registers_to_save) { ASSERT(size >= kPointerSize && size <= Heap::MaxObjectSizeInNewSpace()); set_comment("[ DeferredAllocateInNewSpace"); } void Generate(); private: int size_; Register target_; int registers_to_save_; }; void DeferredAllocateInNewSpace::Generate() { for (int i = 0; i < kNumRegs; i++) { if (registers_to_save_ & (1 << i)) { Register save_register = { i }; __ push(save_register); } } __ Push(Smi::FromInt(size_)); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); if (!target_.is(rax)) { __ movq(target_, rax); } for (int i = kNumRegs - 1; i >= 0; i--) { if (registers_to_save_ & (1 << i)) { Register save_register = { i }; __ pop(save_register); } } } void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { Comment cmnt(masm_, "[ RegExp Literal"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the RegExp object. If so, // jump to the deferred code passing the literals array. DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex); deferred->Branch(equal); deferred->BindExit(); // Register of boilerplate contains RegExp object. Result tmp = allocator()->Allocate(); ASSERT(tmp.is_valid()); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; DeferredAllocateInNewSpace* allocate_fallback = new DeferredAllocateInNewSpace(size, literals.reg()); frame_->Push(&boilerplate); frame_->SpillTop(); __ AllocateInNewSpace(size, literals.reg(), tmp.reg(), no_reg, allocate_fallback->entry_label(), TAG_OBJECT); allocate_fallback->BindExit(); boilerplate = frame_->Pop(); // Copy from boilerplate to clone and return clone. for (int i = 0; i < size; i += kPointerSize) { __ movq(tmp.reg(), FieldOperand(boilerplate.reg(), i)); __ movq(FieldOperand(literals.reg(), i), tmp.reg()); } frame_->Push(&literals); } void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { Comment cmnt(masm_, "[ ObjectLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Literal array. frame_->Push(&literals); // Literal index. frame_->Push(Smi::FromInt(node->literal_index())); // Constant properties. frame_->Push(node->constant_properties()); // Should the object literal have fast elements? frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0)); Result clone; if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } frame_->Push(&clone); // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. node->CalculateEmitStore(); for (int i = 0; i < node->properties()->length(); i++) { ObjectLiteral::Property* property = node->properties()->at(i); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: break; case ObjectLiteral::Property::MATERIALIZED_LITERAL: if (CompileTimeValue::IsCompileTimeValue(property->value())) break; // else fall through. case ObjectLiteral::Property::COMPUTED: { Handle key(property->key()->handle()); if (key->IsSymbol()) { // Duplicate the object as the IC receiver. frame_->Dup(); Load(property->value()); if (property->emit_store()) { Result ignored = frame_->CallStoreIC(Handle::cast(key), false, strict_mode_flag()); // A test rax instruction following the store IC call would // indicate the presence of an inlined version of the // store. Add a nop to indicate that there is no such // inlined version. __ nop(); } else { frame_->Drop(2); } break; } // Fall through } case ObjectLiteral::Property::PROTOTYPE: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); Load(property->value()); if (property->emit_store()) { frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes // Ignore the result. Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4); } else { frame_->Drop(3); } break; } case ObjectLiteral::Property::SETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(1)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } case ObjectLiteral::Property::GETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(0)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } default: UNREACHABLE(); } } } void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { Comment cmnt(masm_, "[ ArrayLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); frame_->Push(&literals); frame_->Push(Smi::FromInt(node->literal_index())); frame_->Push(node->constant_elements()); int length = node->values()->length(); Result clone; if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); clone = frame_->CallStub(&stub, 3); __ IncrementCounter(&Counters::cow_arrays_created_stub, 1); } else if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::CLONE_ELEMENTS, length); clone = frame_->CallStub(&stub, 3); } frame_->Push(&clone); // Generate code to set the elements in the array that are not // literals. for (int i = 0; i < length; i++) { Expression* value = node->values()->at(i); if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) { continue; } // The property must be set by generated code. Load(value); // Get the property value off the stack. Result prop_value = frame_->Pop(); prop_value.ToRegister(); // Fetch the array literal while leaving a copy on the stack and // use it to get the elements array. frame_->Dup(); Result elements = frame_->Pop(); elements.ToRegister(); frame_->Spill(elements.reg()); // Get the elements FixedArray. __ movq(elements.reg(), FieldOperand(elements.reg(), JSObject::kElementsOffset)); // Write to the indexed properties array. int offset = i * kPointerSize + FixedArray::kHeaderSize; __ movq(FieldOperand(elements.reg(), offset), prop_value.reg()); // Update the write barrier for the array address. frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); } } void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { ASSERT(!in_spilled_code()); // Call runtime routine to allocate the catch extension object and // assign the exception value to the catch variable. Comment cmnt(masm_, "[ CatchExtensionObject"); Load(node->key()); Load(node->value()); Result result = frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); frame_->Push(&result); } void CodeGenerator::EmitSlotAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm(), "[ Variable Assignment"); Variable* var = node->target()->AsVariableProxy()->AsVariable(); ASSERT(var != NULL); Slot* slot = var->AsSlot(); ASSERT(slot != NULL); // Evaluate the right-hand side. if (node->is_compound()) { // For a compound assignment the right-hand side is a binary operation // between the current property value and the actual right-hand side. LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); Load(node->value()); // Perform the binary operation. bool overwrite_value = node->value()->ResultOverwriteAllowed(); // Construct the implicit binary operation. BinaryOperation expr(node); GenericBinaryOperation(&expr, overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { // For non-compound assignment just load the right-hand side. Load(node->value()); } // Perform the assignment. if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { CodeForSourcePosition(node->position()); StoreToSlot(slot, node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); } ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm(), "[ Named Property Assignment"); Variable* var = node->target()->AsVariableProxy()->AsVariable(); Property* prop = node->target()->AsProperty(); ASSERT(var == NULL || (prop == NULL && var->is_global())); // Initialize name and evaluate the receiver sub-expression if necessary. If // the receiver is trivial it is not placed on the stack at this point, but // loaded whenever actually needed. Handle name; bool is_trivial_receiver = false; if (var != NULL) { name = var->name(); } else { Literal* lit = prop->key()->AsLiteral(); ASSERT_NOT_NULL(lit); name = Handle::cast(lit->handle()); // Do not materialize the receiver on the frame if it is trivial. is_trivial_receiver = prop->obj()->IsTrivial(); if (!is_trivial_receiver) Load(prop->obj()); } // Change to slow case in the beginning of an initialization block to // avoid the quadratic behavior of repeatedly adding fast properties. if (node->starts_initialization_block()) { // Initialization block consists of assignments of the form expr.x = ..., so // this will never be an assignment to a variable, so there must be a // receiver object. ASSERT_EQ(NULL, var); if (is_trivial_receiver) { frame()->Push(prop->obj()); } else { frame()->Dup(); } Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); } // Change to fast case at the end of an initialization block. To prepare for // that add an extra copy of the receiver to the frame, so that it can be // converted back to fast case after the assignment. if (node->ends_initialization_block() && !is_trivial_receiver) { frame()->Dup(); } // Stack layout: // [tos] : receiver (only materialized if non-trivial) // [tos+1] : receiver if at the end of an initialization block // Evaluate the right-hand side. if (node->is_compound()) { // For a compound assignment the right-hand side is a binary operation // between the current property value and the actual right-hand side. if (is_trivial_receiver) { frame()->Push(prop->obj()); } else if (var != NULL) { // The LoadIC stub expects the object in rax. // Freeing rax causes the code generator to load the global into it. frame_->Spill(rax); LoadGlobal(); } else { frame()->Dup(); } Result value = EmitNamedLoad(name, var != NULL); frame()->Push(&value); Load(node->value()); bool overwrite_value = node->value()->ResultOverwriteAllowed(); // Construct the implicit binary operation. BinaryOperation expr(node); GenericBinaryOperation(&expr, overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { // For non-compound assignment just load the right-hand side. Load(node->value()); } // Stack layout: // [tos] : value // [tos+1] : receiver (only materialized if non-trivial) // [tos+2] : receiver if at the end of an initialization block // Perform the assignment. It is safe to ignore constants here. ASSERT(var == NULL || var->mode() != Variable::CONST); ASSERT_NE(Token::INIT_CONST, node->op()); if (is_trivial_receiver) { Result value = frame()->Pop(); frame()->Push(prop->obj()); frame()->Push(&value); } CodeForSourcePosition(node->position()); bool is_contextual = (var != NULL); Result answer = EmitNamedStore(name, is_contextual); frame()->Push(&answer); // Stack layout: // [tos] : result // [tos+1] : receiver if at the end of an initialization block if (node->ends_initialization_block()) { ASSERT_EQ(NULL, var); // The argument to the runtime call is the receiver. if (is_trivial_receiver) { frame()->Push(prop->obj()); } else { // A copy of the receiver is below the value of the assignment. Swap // the receiver and the value of the assignment expression. Result result = frame()->Pop(); Result receiver = frame()->Pop(); frame()->Push(&result); frame()->Push(&receiver); } Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } // Stack layout: // [tos] : result ASSERT_EQ(frame()->height(), original_height + 1); } void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm_, "[ Keyed Property Assignment"); Property* prop = node->target()->AsProperty(); ASSERT_NOT_NULL(prop); // Evaluate the receiver subexpression. Load(prop->obj()); // Change to slow case in the beginning of an initialization block to // avoid the quadratic behavior of repeatedly adding fast properties. if (node->starts_initialization_block()) { frame_->Dup(); Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); } // Change to fast case at the end of an initialization block. To prepare for // that add an extra copy of the receiver to the frame, so that it can be // converted back to fast case after the assignment. if (node->ends_initialization_block()) { frame_->Dup(); } // Evaluate the key subexpression. Load(prop->key()); // Stack layout: // [tos] : key // [tos+1] : receiver // [tos+2] : receiver if at the end of an initialization block // Evaluate the right-hand side. if (node->is_compound()) { // For a compound assignment the right-hand side is a binary operation // between the current property value and the actual right-hand side. // Duplicate receiver and key for loading the current property value. frame()->PushElementAt(1); frame()->PushElementAt(1); Result value = EmitKeyedLoad(); frame()->Push(&value); Load(node->value()); // Perform the binary operation. bool overwrite_value = node->value()->ResultOverwriteAllowed(); BinaryOperation expr(node); GenericBinaryOperation(&expr, overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { // For non-compound assignment just load the right-hand side. Load(node->value()); } // Stack layout: // [tos] : value // [tos+1] : key // [tos+2] : receiver // [tos+3] : receiver if at the end of an initialization block // Perform the assignment. It is safe to ignore constants here. ASSERT(node->op() != Token::INIT_CONST); CodeForSourcePosition(node->position()); Result answer = EmitKeyedStore(prop->key()->type()); frame()->Push(&answer); // Stack layout: // [tos] : result // [tos+1] : receiver if at the end of an initialization block // Change to fast case at the end of an initialization block. if (node->ends_initialization_block()) { // The argument to the runtime call is the extra copy of the receiver, // which is below the value of the assignment. Swap the receiver and // the value of the assignment expression. Result result = frame()->Pop(); Result receiver = frame()->Pop(); frame()->Push(&result); frame()->Push(&receiver); Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } // Stack layout: // [tos] : result ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::VisitAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Variable* var = node->target()->AsVariableProxy()->AsVariable(); Property* prop = node->target()->AsProperty(); if (var != NULL && !var->is_global()) { EmitSlotAssignment(node); } else if ((prop != NULL && prop->key()->IsPropertyName()) || (var != NULL && var->is_global())) { // Properties whose keys are property names and global variables are // treated as named property references. We do not need to consider // global 'this' because it is not a valid left-hand side. EmitNamedPropertyAssignment(node); } else if (prop != NULL) { // Other properties (including rewritten parameters for a function that // uses arguments) are keyed property assignments. EmitKeyedPropertyAssignment(node); } else { // Invalid left-hand side. Load(node->target()); Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); // The runtime call doesn't actually return but the code generator will // still generate code and expects a certain frame height. frame()->Push(&result); } ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::VisitThrow(Throw* node) { Comment cmnt(masm_, "[ Throw"); Load(node->exception()); Result result = frame_->CallRuntime(Runtime::kThrow, 1); frame_->Push(&result); } void CodeGenerator::VisitProperty(Property* node) { Comment cmnt(masm_, "[ Property"); Reference property(this, node); property.GetValue(); } void CodeGenerator::VisitCall(Call* node) { Comment cmnt(masm_, "[ Call"); ZoneList* args = node->arguments(); // Check if the function is a variable or a property. Expression* function = node->expression(); Variable* var = function->AsVariableProxy()->AsVariable(); Property* property = function->AsProperty(); // ------------------------------------------------------------------------ // Fast-case: Use inline caching. // --- // According to ECMA-262, section 11.2.3, page 44, the function to call // must be resolved after the arguments have been evaluated. The IC code // automatically handles this by loading the arguments before the function // is resolved in cache misses (this also holds for megamorphic calls). // ------------------------------------------------------------------------ if (var != NULL && var->is_possibly_eval()) { // ---------------------------------- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed // ---------------------------------- // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. // Prepare the stack for the call to the resolved function. Load(function); // Allocate a frame slot for the receiver. frame_->Push(Factory::undefined_value()); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); frame_->SpillTop(); } // Result to hold the result of the function resolution and the // final result of the eval call. Result result; // If we know that eval can only be shadowed by eval-introduced // variables we attempt to load the global eval function directly // in generated code. If we succeed, there is no need to perform a // context lookup in the runtime system. JumpTarget done; if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { ASSERT(var->AsSlot()->type() == Slot::LOOKUP); JumpTarget slow; // Prepare the stack for the call to // ResolvePossiblyDirectEvalNoLookup by pushing the loaded // function, the first argument to the eval call and the // receiver. Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(), NOT_INSIDE_TYPEOF, &slow); frame_->Push(&fun); if (arg_count > 0) { frame_->PushElementAt(arg_count); } else { frame_->Push(Factory::undefined_value()); } frame_->PushParameterAt(-1); // Push the strict mode flag. frame_->Push(Smi::FromInt(strict_mode_flag())); // Resolve the call. result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); done.Jump(&result); slow.Bind(); } // Prepare the stack for the call to ResolvePossiblyDirectEval by // pushing the loaded function, the first argument to the eval // call and the receiver. frame_->PushElementAt(arg_count + 1); if (arg_count > 0) { frame_->PushElementAt(arg_count); } else { frame_->Push(Factory::undefined_value()); } frame_->PushParameterAt(-1); // Push the strict mode flag. frame_->Push(Smi::FromInt(strict_mode_flag())); // Resolve the call. result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); // If we generated fast-case code bind the jump-target where fast // and slow case merge. if (done.is_linked()) done.Bind(&result); // The runtime call returns a pair of values in rax (function) and // rdx (receiver). Touch up the stack with the right values. Result receiver = allocator_->Allocate(rdx); frame_->SetElementAt(arg_count + 1, &result); frame_->SetElementAt(arg_count, &receiver); receiver.Unuse(); // Call the function. CodeForSourcePosition(node->position()); InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); result = frame_->CallStub(&call_function, arg_count + 1); // Restore the context and overwrite the function on the stack with // the result. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &result); } else if (var != NULL && !var->is_this() && var->is_global()) { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is global // ---------------------------------- // Pass the global object as the receiver and let the IC stub // patch the stack to use the global proxy as 'this' in the // invoked function. LoadGlobal(); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); frame_->SpillTop(); } // Push the name of the function on the frame. frame_->Push(var->name()); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, arg_count, loop_nesting()); frame_->RestoreContextRegister(); // Replace the function on the stack with the result. frame_->Push(&result); } else if (var != NULL && var->AsSlot() != NULL && var->AsSlot()->type() == Slot::LOOKUP) { // ---------------------------------- // JavaScript examples: // // with (obj) foo(1, 2, 3) // foo may be in obj. // // function f() {}; // function g() { // eval(...); // f(); // f could be in extension object. // } // ---------------------------------- JumpTarget slow, done; Result function; // Generate fast case for loading functions from slots that // correspond to local/global variables or arguments unless they // are shadowed by eval-introduced bindings. EmitDynamicLoadFromSlotFastCase(var->AsSlot(), NOT_INSIDE_TYPEOF, &function, &slow, &done); slow.Bind(); // Load the function from the context. Sync the frame so we can // push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(var->name()); frame_->CallRuntime(Runtime::kLoadContextSlot, 2); // The runtime call returns a pair of values in rax and rdx. The // looked-up function is in rax and the receiver is in rdx. These // register references are not ref counted here. We spill them // eagerly since they are arguments to an inevitable call (and are // not sharable by the arguments). ASSERT(!allocator()->is_used(rax)); frame_->EmitPush(rax); // Load the receiver. ASSERT(!allocator()->is_used(rdx)); frame_->EmitPush(rdx); // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { JumpTarget call; call.Jump(); done.Bind(&function); frame_->Push(&function); LoadGlobalReceiver(); call.Bind(); } // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } else if (property != NULL) { // Check if the key is a literal string. Literal* literal = property->key()->AsLiteral(); if (literal != NULL && literal->handle()->IsSymbol()) { // ------------------------------------------------------------------ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' // ------------------------------------------------------------------ Handle name = Handle::cast(literal->handle()); if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && name->IsEqualTo(CStrVector("apply")) && args->length() == 2 && args->at(1)->AsVariableProxy() != NULL && args->at(1)->AsVariableProxy()->IsArguments()) { // Use the optimized Function.prototype.apply that avoids // allocating lazily allocated arguments objects. CallApplyLazy(property->obj(), args->at(0), args->at(1)->AsVariableProxy(), node->position()); } else { // Push the receiver onto the frame. Load(property->obj()); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); frame_->SpillTop(); } // Push the name of the function onto the frame. frame_->Push(name); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting()); frame_->RestoreContextRegister(); frame_->Push(&result); } } else { // ------------------------------------------- // JavaScript example: 'array[index](1, 2, 3)' // ------------------------------------------- // Load the function to call from the property through a reference. if (property->is_synthetic()) { Reference ref(this, property, false); ref.GetValue(); // Use global object as receiver. LoadGlobalReceiver(); // Call the function. CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); } else { // Push the receiver onto the frame. Load(property->obj()); // Load the name of the function. Load(property->key()); // Swap the name of the function and the receiver on the stack to follow // the calling convention for call ICs. Result key = frame_->Pop(); Result receiver = frame_->Pop(); frame_->Push(&key); frame_->Push(&receiver); key.Unuse(); receiver.Unuse(); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); frame_->SpillTop(); } // Place the key on top of stack and call the IC initialization code. frame_->PushElementAt(arg_count + 1); CodeForSourcePosition(node->position()); Result result = frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting()); frame_->Drop(); // Drop the key still on the stack. frame_->RestoreContextRegister(); frame_->Push(&result); } } } else { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is not global // ---------------------------------- // Load the function. Load(function); // Pass the global proxy as the receiver. LoadGlobalReceiver(); // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } } void CodeGenerator::VisitCallNew(CallNew* node) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. This is different from ordinary calls, where the // actual function to call is resolved after the arguments have been // evaluated. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. Load(node->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = node->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. CodeForSourcePosition(node->position()); Result result = frame_->CallConstructor(arg_count); frame_->Push(&result); } void CodeGenerator::GenerateIsSmi(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); value.Unuse(); destination()->Split(is_smi); } void CodeGenerator::GenerateLog(ZoneList* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (ShouldGenerateLog(args->at(0))) { Load(args->at(1)); Load(args->at(2)); frame_->CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. frame_->Push(Factory::undefined_value()); } void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition non_negative_smi = masm_->CheckNonNegativeSmi(value.reg()); value.Unuse(); destination()->Split(non_negative_smi); } class DeferredStringCharCodeAt : public DeferredCode { public: DeferredStringCharCodeAt(Register object, Register index, Register scratch, Register result) : result_(result), char_code_at_generator_(object, index, scratch, result, &need_conversion_, &need_conversion_, &index_out_of_range_, STRING_INDEX_IS_NUMBER) {} StringCharCodeAtGenerator* fast_case_generator() { return &char_code_at_generator_; } virtual void Generate() { VirtualFrameRuntimeCallHelper call_helper(frame_state()); char_code_at_generator_.GenerateSlow(masm(), call_helper); __ bind(&need_conversion_); // Move the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); __ jmp(exit_label()); __ bind(&index_out_of_range_); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result_, Heap::kNanValueRootIndex); __ jmp(exit_label()); } private: Register result_; Label need_conversion_; Label index_out_of_range_; StringCharCodeAtGenerator char_code_at_generator_; }; // This generates code that performs a String.prototype.charCodeAt() call // or returns a smi in order to trigger conversion. void CodeGenerator::GenerateStringCharCodeAt(ZoneList* args) { Comment(masm_, "[ GenerateStringCharCodeAt"); ASSERT(args->length() == 2); Load(args->at(0)); Load(args->at(1)); Result index = frame_->Pop(); Result object = frame_->Pop(); object.ToRegister(); index.ToRegister(); // We might mutate the object register. frame_->Spill(object.reg()); // We need two extra registers. Result result = allocator()->Allocate(); ASSERT(result.is_valid()); Result scratch = allocator()->Allocate(); ASSERT(scratch.is_valid()); DeferredStringCharCodeAt* deferred = new DeferredStringCharCodeAt(object.reg(), index.reg(), scratch.reg(), result.reg()); deferred->fast_case_generator()->GenerateFast(masm_); deferred->BindExit(); frame_->Push(&result); } class DeferredStringCharFromCode : public DeferredCode { public: DeferredStringCharFromCode(Register code, Register result) : char_from_code_generator_(code, result) {} StringCharFromCodeGenerator* fast_case_generator() { return &char_from_code_generator_; } virtual void Generate() { VirtualFrameRuntimeCallHelper call_helper(frame_state()); char_from_code_generator_.GenerateSlow(masm(), call_helper); } private: StringCharFromCodeGenerator char_from_code_generator_; }; // Generates code for creating a one-char string from a char code. void CodeGenerator::GenerateStringCharFromCode(ZoneList* args) { Comment(masm_, "[ GenerateStringCharFromCode"); ASSERT(args->length() == 1); Load(args->at(0)); Result code = frame_->Pop(); code.ToRegister(); ASSERT(code.is_valid()); Result result = allocator()->Allocate(); ASSERT(result.is_valid()); DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( code.reg(), result.reg()); deferred->fast_case_generator()->GenerateFast(masm_); deferred->BindExit(); frame_->Push(&result); } class DeferredStringCharAt : public DeferredCode { public: DeferredStringCharAt(Register object, Register index, Register scratch1, Register scratch2, Register result) : result_(result), char_at_generator_(object, index, scratch1, scratch2, result, &need_conversion_, &need_conversion_, &index_out_of_range_, STRING_INDEX_IS_NUMBER) {} StringCharAtGenerator* fast_case_generator() { return &char_at_generator_; } virtual void Generate() { VirtualFrameRuntimeCallHelper call_helper(frame_state()); char_at_generator_.GenerateSlow(masm(), call_helper); __ bind(&need_conversion_); // Move smi zero into the result register, which will trigger // conversion. __ Move(result_, Smi::FromInt(0)); __ jmp(exit_label()); __ bind(&index_out_of_range_); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result_, Heap::kEmptyStringRootIndex); __ jmp(exit_label()); } private: Register result_; Label need_conversion_; Label index_out_of_range_; StringCharAtGenerator char_at_generator_; }; // This generates code that performs a String.prototype.charAt() call // or returns a smi in order to trigger conversion. void CodeGenerator::GenerateStringCharAt(ZoneList* args) { Comment(masm_, "[ GenerateStringCharAt"); ASSERT(args->length() == 2); Load(args->at(0)); Load(args->at(1)); Result index = frame_->Pop(); Result object = frame_->Pop(); object.ToRegister(); index.ToRegister(); // We might mutate the object register. frame_->Spill(object.reg()); // We need three extra registers. Result result = allocator()->Allocate(); ASSERT(result.is_valid()); Result scratch1 = allocator()->Allocate(); ASSERT(scratch1.is_valid()); Result scratch2 = allocator()->Allocate(); ASSERT(scratch2.is_valid()); DeferredStringCharAt* deferred = new DeferredStringCharAt(object.reg(), index.reg(), scratch1.reg(), scratch2.reg(), result.reg()); deferred->fast_case_generator()->GenerateFast(masm_); deferred->BindExit(); frame_->Push(&result); } void CodeGenerator::GenerateIsArray(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); destination()->false_target()->Branch(is_smi); // It is a heap object - get map. // Check if the object is a JS array or not. __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister); value.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsRegExp(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); destination()->false_target()->Branch(is_smi); // It is a heap object - get map. // Check if the object is a regexp. __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister); value.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsObject(ZoneList* args) { // This generates a fast version of: // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ Move(kScratchRegister, Factory::null_value()); __ cmpq(obj.reg(), kScratchRegister); destination()->true_target()->Branch(equal); __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ movzxbq(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE)); destination()->false_target()->Branch(below); __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE)); obj.Unuse(); destination()->Split(below_equal); } void CodeGenerator::GenerateIsSpecObject(ZoneList* args) { // This generates a fast version of: // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || // typeof(arg) == function). // It includes undetectable objects (as opposed to IsObject). ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); destination()->false_target()->Branch(is_smi); // Check that this is an object. __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, kScratchRegister); value.Unuse(); destination()->Split(above_equal); } // Deferred code to check whether the String JavaScript object is safe for using // default value of. This code is called after the bit caching this information // in the map has been checked with the map for the object in the map_result_ // register. On return the register map_result_ contains 1 for true and 0 for // false. class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { public: DeferredIsStringWrapperSafeForDefaultValueOf(Register object, Register map_result, Register scratch1, Register scratch2) : object_(object), map_result_(map_result), scratch1_(scratch1), scratch2_(scratch2) { } virtual void Generate() { Label false_result; // Check that map is loaded as expected. if (FLAG_debug_code) { __ cmpq(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); __ Assert(equal, "Map not in expected register"); } // Check for fast case object. Generate false result for slow case object. __ movq(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset)); __ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); __ CompareRoot(scratch1_, Heap::kHashTableMapRootIndex); __ j(equal, &false_result); // Look for valueOf symbol in the descriptor array, and indicate false if // found. The type is not checked, so if it is a transition it is a false // negative. __ movq(map_result_, FieldOperand(map_result_, Map::kInstanceDescriptorsOffset)); __ movq(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset)); // map_result_: descriptor array // scratch1_: length of descriptor array // Calculate the end of the descriptor array. SmiIndex index = masm_->SmiToIndex(scratch2_, scratch1_, kPointerSizeLog2); __ lea(scratch1_, Operand( map_result_, index.reg, index.scale, FixedArray::kHeaderSize)); // Calculate location of the first key name. __ addq(map_result_, Immediate(FixedArray::kHeaderSize + DescriptorArray::kFirstIndex * kPointerSize)); // Loop through all the keys in the descriptor array. If one of these is the // symbol valueOf the result is false. Label entry, loop; __ jmp(&entry); __ bind(&loop); __ movq(scratch2_, FieldOperand(map_result_, 0)); __ Cmp(scratch2_, Factory::value_of_symbol()); __ j(equal, &false_result); __ addq(map_result_, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(map_result_, scratch1_); __ j(not_equal, &loop); // Reload map as register map_result_ was used as temporary above. __ movq(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); // If a valueOf property is not found on the object check that it's // prototype is the un-modified String prototype. If not result is false. __ movq(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset)); __ testq(scratch1_, Immediate(kSmiTagMask)); __ j(zero, &false_result); __ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); __ movq(scratch2_, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(scratch2_, FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset)); __ cmpq(scratch1_, ContextOperand( scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); __ j(not_equal, &false_result); // Set the bit in the map to indicate that it has been checked safe for // default valueOf and set true result. __ or_(FieldOperand(map_result_, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ Set(map_result_, 1); __ jmp(exit_label()); __ bind(&false_result); // Set false result. __ Set(map_result_, 0); } private: Register object_; Register map_result_; Register scratch1_; Register scratch2_; }; void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); // Pop the string wrapper. obj.ToRegister(); ASSERT(obj.is_valid()); if (FLAG_debug_code) { __ AbortIfSmi(obj.reg()); } // Check whether this map has already been checked to be safe for default // valueOf. Result map_result = allocator()->Allocate(); ASSERT(map_result.is_valid()); __ movq(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(map_result.reg(), Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); destination()->true_target()->Branch(not_zero); // We need an additional two scratch registers for the deferred code. Result temp1 = allocator()->Allocate(); ASSERT(temp1.is_valid()); Result temp2 = allocator()->Allocate(); ASSERT(temp2.is_valid()); DeferredIsStringWrapperSafeForDefaultValueOf* deferred = new DeferredIsStringWrapperSafeForDefaultValueOf( obj.reg(), map_result.reg(), temp1.reg(), temp2.reg()); deferred->Branch(zero); deferred->BindExit(); __ testq(map_result.reg(), map_result.reg()); obj.Unuse(); map_result.Unuse(); temp1.Unuse(); temp2.Unuse(); destination()->Split(not_equal); } void CodeGenerator::GenerateIsFunction(ZoneList* args) { // This generates a fast version of: // (%_ClassOf(arg) === 'Function') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); obj.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsUndetectableObject(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kBitFieldOffset)); __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable)); obj.Unuse(); destination()->Split(not_zero); } void CodeGenerator::GenerateIsConstructCall(ZoneList* args) { ASSERT(args->length() == 0); // Get the frame pointer for the calling frame. Result fp = allocator()->Allocate(); __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker); __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); fp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateArgumentsLength(ZoneList* args) { ASSERT(args->length() == 0); Result fp = allocator_->Allocate(); Result result = allocator_->Allocate(); ASSERT(fp.is_valid() && result.is_valid()); Label exit; // Get the number of formal parameters. __ Move(result.reg(), Smi::FromInt(scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &exit); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ movq(result.reg(), Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); result.set_type_info(TypeInfo::Smi()); if (FLAG_debug_code) { __ AbortIfNotSmi(result.reg()); } frame_->Push(&result); } void CodeGenerator::GenerateClassOf(ZoneList* args) { ASSERT(args->length() == 1); JumpTarget leave, null, function, non_function_constructor; Load(args->at(0)); // Load the object. Result obj = frame_->Pop(); obj.ToRegister(); frame_->Spill(obj.reg()); // If the object is a smi, we return null. Condition is_smi = masm_->CheckSmi(obj.reg()); null.Branch(is_smi); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); null.Branch(below); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); function.Branch(equal); // Check if the constructor in the map is a function. __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); non_function_constructor.Branch(not_equal); // The obj register now contains the constructor function. Grab the // instance class name from there. __ movq(obj.reg(), FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); __ movq(obj.reg(), FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); frame_->Push(&obj); leave.Jump(); // Functions have class 'Function'. function.Bind(); frame_->Push(Factory::function_class_symbol()); leave.Jump(); // Objects with a non-function constructor have class 'Object'. non_function_constructor.Bind(); frame_->Push(Factory::Object_symbol()); leave.Jump(); // Non-JS objects have class null. null.Bind(); frame_->Push(Factory::null_value()); // All done. leave.Bind(); } void CodeGenerator::GenerateValueOf(ZoneList* args) { ASSERT(args->length() == 1); JumpTarget leave; Load(args->at(0)); // Load the object. frame_->Dup(); Result object = frame_->Pop(); object.ToRegister(); ASSERT(object.is_valid()); // if (object->IsSmi()) return object. Condition is_smi = masm_->CheckSmi(object.reg()); leave.Branch(is_smi); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // if (!object->IsJSValue()) return object. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); leave.Branch(not_equal); __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); object.Unuse(); frame_->SetElementAt(0, &temp); leave.Bind(); } void CodeGenerator::GenerateSetValueOf(ZoneList* args) { ASSERT(args->length() == 2); JumpTarget leave; Load(args->at(0)); // Load the object. Load(args->at(1)); // Load the value. Result value = frame_->Pop(); Result object = frame_->Pop(); value.ToRegister(); object.ToRegister(); // if (object->IsSmi()) return value. Condition is_smi = masm_->CheckSmi(object.reg()); leave.Branch(is_smi, &value); // It is a heap object - get its map. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); // if (!object->IsJSValue()) return value. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); leave.Branch(not_equal, &value); // Store the value. __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. Result duplicate_value = allocator_->Allocate(); ASSERT(duplicate_value.is_valid()); __ movq(duplicate_value.reg(), value.reg()); // The object register is also overwritten by the write barrier and // possibly aliased in the frame. frame_->Spill(object.reg()); __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), scratch.reg()); object.Unuse(); scratch.Unuse(); duplicate_value.Unuse(); // Leave. leave.Bind(&value); frame_->Push(&value); } void CodeGenerator::GenerateArguments(ZoneList* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. Load(args->at(0)); Result key = frame_->Pop(); // Explicitly create a constant result. Result count(Handle(Smi::FromInt(scope()->num_parameters()))); // Call the shared stub to get to arguments[key]. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); Result result = frame_->CallStub(&stub, &key, &count); frame_->Push(&result); } void CodeGenerator::GenerateObjectEquals(ZoneList* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. Load(args->at(0)); Load(args->at(1)); Result right = frame_->Pop(); Result left = frame_->Pop(); right.ToRegister(); left.ToRegister(); __ cmpq(right.reg(), left.reg()); right.Unuse(); left.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateGetFramePointer(ZoneList* args) { ASSERT(args->length() == 0); // RBP value is aligned, so it should be tagged as a smi (without necesarily // being padded as a smi, so it should not be treated as a smi.). STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); Result rbp_as_smi = allocator_->Allocate(); ASSERT(rbp_as_smi.is_valid()); __ movq(rbp_as_smi.reg(), rbp); frame_->Push(&rbp_as_smi); } void CodeGenerator::GenerateRandomHeapNumber( ZoneList* args) { ASSERT(args->length() == 0); frame_->SpillAll(); Label slow_allocate_heapnumber; Label heapnumber_allocated; __ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ movq(rbx, rax); __ bind(&heapnumber_allocated); // Return a random uint32 number in rax. // The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs. __ PrepareCallCFunction(0); __ CallCFunction(ExternalReference::random_uint32_function(), 0); // Convert 32 random bits in rax to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). __ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single. __ movd(xmm1, rcx); __ movd(xmm0, rax); __ cvtss2sd(xmm1, xmm1); __ xorpd(xmm0, xmm1); __ subsd(xmm0, xmm1); __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rbx); Result result = allocator_->Allocate(rax); frame_->Push(&result); } void CodeGenerator::GenerateStringAdd(ZoneList* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateSubString(ZoneList* args) { ASSERT_EQ(3, args->length()); Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); SubStringStub stub; Result answer = frame_->CallStub(&stub, 3); frame_->Push(&answer); } void CodeGenerator::GenerateStringCompare(ZoneList* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringCompareStub stub; Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateRegExpExec(ZoneList* args) { ASSERT_EQ(args->length(), 4); // Load the arguments on the stack and call the runtime system. Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); Load(args->at(3)); RegExpExecStub stub; Result result = frame_->CallStub(&stub, 4); frame_->Push(&result); } void CodeGenerator::GenerateRegExpConstructResult(ZoneList* args) { ASSERT_EQ(3, args->length()); Load(args->at(0)); // Size of array, smi. Load(args->at(1)); // "index" property value. Load(args->at(2)); // "input" property value. RegExpConstructResultStub stub; Result result = frame_->CallStub(&stub, 3); frame_->Push(&result); } class DeferredSearchCache: public DeferredCode { public: DeferredSearchCache(Register dst, Register cache, Register key, Register scratch) : dst_(dst), cache_(cache), key_(key), scratch_(scratch) { set_comment("[ DeferredSearchCache"); } virtual void Generate(); private: Register dst_; // on invocation index of finger (as int32), on exit // holds value being looked up. Register cache_; // instance of JSFunctionResultCache. Register key_; // key being looked up. Register scratch_; }; // Return a position of the element at |index| + |additional_offset| // in FixedArray pointer to which is held in |array|. |index| is int32. static Operand ArrayElement(Register array, Register index, int additional_offset = 0) { int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize; return FieldOperand(array, index, times_pointer_size, offset); } void DeferredSearchCache::Generate() { Label first_loop, search_further, second_loop, cache_miss; Immediate kEntriesIndexImm = Immediate(JSFunctionResultCache::kEntriesIndex); Immediate kEntrySizeImm = Immediate(JSFunctionResultCache::kEntrySize); // Check the cache from finger to start of the cache. __ bind(&first_loop); __ subl(dst_, kEntrySizeImm); __ cmpl(dst_, kEntriesIndexImm); __ j(less, &search_further); __ cmpq(ArrayElement(cache_, dst_), key_); __ j(not_equal, &first_loop); __ Integer32ToSmiField( FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); __ movq(dst_, ArrayElement(cache_, dst_, 1)); __ jmp(exit_label()); __ bind(&search_further); // Check the cache from end of cache up to finger. __ SmiToInteger32(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset)); __ SmiToInteger32(scratch_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset)); __ bind(&second_loop); __ subl(dst_, kEntrySizeImm); __ cmpl(dst_, scratch_); __ j(less_equal, &cache_miss); __ cmpq(ArrayElement(cache_, dst_), key_); __ j(not_equal, &second_loop); __ Integer32ToSmiField( FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); __ movq(dst_, ArrayElement(cache_, dst_, 1)); __ jmp(exit_label()); __ bind(&cache_miss); __ push(cache_); // store a reference to cache __ push(key_); // store a key __ push(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ push(key_); // On x64 function must be in rdi. __ movq(rdi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset)); ParameterCount expected(1); __ InvokeFunction(rdi, expected, CALL_FUNCTION); // Find a place to put new cached value into. Label add_new_entry, update_cache; __ movq(rcx, Operand(rsp, kPointerSize)); // restore the cache // Possible optimization: cache size is constant for the given cache // so technically we could use a constant here. However, if we have // cache miss this optimization would hardly matter much. // Check if we could add new entry to cache. __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ SmiToInteger32(r9, FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset)); __ cmpl(rbx, r9); __ j(greater, &add_new_entry); // Check if we could evict entry after finger. __ SmiToInteger32(rdx, FieldOperand(rcx, JSFunctionResultCache::kFingerOffset)); __ addl(rdx, kEntrySizeImm); Label forward; __ cmpl(rbx, rdx); __ j(greater, &forward); // Need to wrap over the cache. __ movl(rdx, kEntriesIndexImm); __ bind(&forward); __ movl(r9, rdx); __ jmp(&update_cache); __ bind(&add_new_entry); // r9 holds cache size as int32. __ leal(rbx, Operand(r9, JSFunctionResultCache::kEntrySize)); __ Integer32ToSmiField( FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset), rbx); // Update the cache itself. // r9 holds the index as int32. __ bind(&update_cache); __ pop(rbx); // restore the key __ Integer32ToSmiField( FieldOperand(rcx, JSFunctionResultCache::kFingerOffset), r9); // Store key. __ movq(ArrayElement(rcx, r9), rbx); __ RecordWrite(rcx, 0, rbx, r9); // Store value. __ pop(rcx); // restore the cache. __ SmiToInteger32(rdx, FieldOperand(rcx, JSFunctionResultCache::kFingerOffset)); __ incl(rdx); // Backup rax, because the RecordWrite macro clobbers its arguments. __ movq(rbx, rax); __ movq(ArrayElement(rcx, rdx), rax); __ RecordWrite(rcx, 0, rbx, rdx); if (!dst_.is(rax)) { __ movq(dst_, rax); } } void CodeGenerator::GenerateGetFromCache(ZoneList* args) { ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle jsfunction_result_caches( Top::global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); frame_->Push(Factory::undefined_value()); return; } Load(args->at(1)); Result key = frame_->Pop(); key.ToRegister(); Result cache = allocator()->Allocate(); ASSERT(cache.is_valid()); __ movq(cache.reg(), ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(cache.reg(), FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset)); __ movq(cache.reg(), ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ movq(cache.reg(), FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id))); Result tmp = allocator()->Allocate(); ASSERT(tmp.is_valid()); Result scratch = allocator()->Allocate(); ASSERT(scratch.is_valid()); DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(), cache.reg(), key.reg(), scratch.reg()); const int kFingerOffset = FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); // tmp.reg() now holds finger offset as a smi. __ SmiToInteger32(tmp.reg(), FieldOperand(cache.reg(), kFingerOffset)); __ cmpq(key.reg(), FieldOperand(cache.reg(), tmp.reg(), times_pointer_size, FixedArray::kHeaderSize)); deferred->Branch(not_equal); __ movq(tmp.reg(), FieldOperand(cache.reg(), tmp.reg(), times_pointer_size, FixedArray::kHeaderSize + kPointerSize)); deferred->BindExit(); frame_->Push(&tmp); } void CodeGenerator::GenerateNumberToString(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and jump to the runtime. Load(args->at(0)); NumberToStringStub stub; Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } class DeferredSwapElements: public DeferredCode { public: DeferredSwapElements(Register object, Register index1, Register index2) : object_(object), index1_(index1), index2_(index2) { set_comment("[ DeferredSwapElements"); } virtual void Generate(); private: Register object_, index1_, index2_; }; void DeferredSwapElements::Generate() { __ push(object_); __ push(index1_); __ push(index2_); __ CallRuntime(Runtime::kSwapElements, 3); } void CodeGenerator::GenerateSwapElements(ZoneList* args) { Comment cmnt(masm_, "[ GenerateSwapElements"); ASSERT_EQ(3, args->length()); Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); Result index2 = frame_->Pop(); index2.ToRegister(); Result index1 = frame_->Pop(); index1.ToRegister(); Result object = frame_->Pop(); object.ToRegister(); Result tmp1 = allocator()->Allocate(); tmp1.ToRegister(); Result tmp2 = allocator()->Allocate(); tmp2.ToRegister(); frame_->Spill(object.reg()); frame_->Spill(index1.reg()); frame_->Spill(index2.reg()); DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(), index1.reg(), index2.reg()); // Fetch the map and check if array is in fast case. // Check that object doesn't require security checks and // has no indexed interceptor. __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg()); deferred->Branch(below); __ testb(FieldOperand(tmp1.reg(), Map::kBitFieldOffset), Immediate(KeyedLoadIC::kSlowCaseBitFieldMask)); deferred->Branch(not_zero); // Check the object's elements are in fast case and writable. __ movq(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(tmp1.reg(), HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); deferred->Branch(not_equal); // Check that both indices are smis. Condition both_smi = masm()->CheckBothSmi(index1.reg(), index2.reg()); deferred->Branch(NegateCondition(both_smi)); // Check that both indices are valid. __ movq(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset)); __ SmiCompare(tmp2.reg(), index1.reg()); deferred->Branch(below_equal); __ SmiCompare(tmp2.reg(), index2.reg()); deferred->Branch(below_equal); // Bring addresses into index1 and index2. __ SmiToInteger32(index1.reg(), index1.reg()); __ lea(index1.reg(), FieldOperand(tmp1.reg(), index1.reg(), times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(index2.reg(), index2.reg()); __ lea(index2.reg(), FieldOperand(tmp1.reg(), index2.reg(), times_pointer_size, FixedArray::kHeaderSize)); // Swap elements. __ movq(object.reg(), Operand(index1.reg(), 0)); __ movq(tmp2.reg(), Operand(index2.reg(), 0)); __ movq(Operand(index2.reg(), 0), object.reg()); __ movq(Operand(index1.reg(), 0), tmp2.reg()); Label done; __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done); // Possible optimization: do a check that both values are Smis // (or them and test against Smi mask.) __ movq(tmp2.reg(), tmp1.reg()); __ RecordWriteHelper(tmp1.reg(), index1.reg(), object.reg()); __ RecordWriteHelper(tmp2.reg(), index2.reg(), object.reg()); __ bind(&done); deferred->BindExit(); frame_->Push(Factory::undefined_value()); } void CodeGenerator::GenerateCallFunction(ZoneList* args) { Comment cmnt(masm_, "[ GenerateCallFunction"); ASSERT(args->length() >= 2); int n_args = args->length() - 2; // for receiver and function. Load(args->at(0)); // receiver for (int i = 0; i < n_args; i++) { Load(args->at(i + 1)); } Load(args->at(n_args + 1)); // function Result result = frame_->CallJSFunction(n_args); frame_->Push(&result); } // Generates the Math.pow method. Only handles special cases and // branches to the runtime system for everything else. Please note // that this function assumes that the callsite has executed ToNumber // on both arguments. void CodeGenerator::GenerateMathPow(ZoneList* args) { ASSERT(args->length() == 2); Load(args->at(0)); Load(args->at(1)); Label allocate_return; // Load the two operands while leaving the values on the frame. frame()->Dup(); Result exponent = frame()->Pop(); exponent.ToRegister(); frame()->Spill(exponent.reg()); frame()->PushElementAt(1); Result base = frame()->Pop(); base.ToRegister(); frame()->Spill(base.reg()); Result answer = allocator()->Allocate(); ASSERT(answer.is_valid()); ASSERT(!exponent.reg().is(base.reg())); JumpTarget call_runtime; // Save 1 in xmm3 - we need this several times later on. __ movl(answer.reg(), Immediate(1)); __ cvtlsi2sd(xmm3, answer.reg()); Label exponent_nonsmi; Label base_nonsmi; // If the exponent is a heap number go to that specific case. __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi); __ JumpIfNotSmi(base.reg(), &base_nonsmi); // Optimized version when y is an integer. Label powi; __ SmiToInteger32(base.reg(), base.reg()); __ cvtlsi2sd(xmm0, base.reg()); __ jmp(&powi); // exponent is smi and base is a heapnumber. __ bind(&base_nonsmi); __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); call_runtime.Branch(not_equal); __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); // Optimized version of pow if y is an integer. __ bind(&powi); __ SmiToInteger32(exponent.reg(), exponent.reg()); // Save exponent in base as we need to check if exponent is negative later. // We know that base and exponent are in different registers. __ movl(base.reg(), exponent.reg()); // Get absolute value of exponent. Label no_neg; __ cmpl(exponent.reg(), Immediate(0)); __ j(greater_equal, &no_neg); __ negl(exponent.reg()); __ bind(&no_neg); // Load xmm1 with 1. __ movsd(xmm1, xmm3); Label while_true; Label no_multiply; __ bind(&while_true); __ shrl(exponent.reg(), Immediate(1)); __ j(not_carry, &no_multiply); __ mulsd(xmm1, xmm0); __ bind(&no_multiply); __ testl(exponent.reg(), exponent.reg()); __ mulsd(xmm0, xmm0); __ j(not_zero, &while_true); // x has the original value of y - if y is negative return 1/result. __ testl(base.reg(), base.reg()); __ j(positive, &allocate_return); // Special case if xmm1 has reached infinity. __ movl(answer.reg(), Immediate(0x7FB00000)); __ movd(xmm0, answer.reg()); __ cvtss2sd(xmm0, xmm0); __ ucomisd(xmm0, xmm1); call_runtime.Branch(equal); __ divsd(xmm3, xmm1); __ movsd(xmm1, xmm3); __ jmp(&allocate_return); // exponent (or both) is a heapnumber - no matter what we should now work // on doubles. __ bind(&exponent_nonsmi); __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); call_runtime.Branch(not_equal); __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); // Test if exponent is nan. __ ucomisd(xmm1, xmm1); call_runtime.Branch(parity_even); Label base_not_smi; Label handle_special_cases; __ JumpIfNotSmi(base.reg(), &base_not_smi); __ SmiToInteger32(base.reg(), base.reg()); __ cvtlsi2sd(xmm0, base.reg()); __ jmp(&handle_special_cases); __ bind(&base_not_smi); __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); call_runtime.Branch(not_equal); __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask)); __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask)); // base is NaN or +/-Infinity call_runtime.Branch(greater_equal); __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); // base is in xmm0 and exponent is in xmm1. __ bind(&handle_special_cases); Label not_minus_half; // Test for -0.5. // Load xmm2 with -0.5. __ movl(answer.reg(), Immediate(0xBF000000)); __ movd(xmm2, answer.reg()); __ cvtss2sd(xmm2, xmm2); // xmm2 now has -0.5. __ ucomisd(xmm2, xmm1); __ j(not_equal, ¬_minus_half); // Calculates reciprocal of square root. // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorpd(xmm1, xmm1); __ addsd(xmm1, xmm0); __ sqrtsd(xmm1, xmm1); __ divsd(xmm3, xmm1); __ movsd(xmm1, xmm3); __ jmp(&allocate_return); // Test for 0.5. __ bind(¬_minus_half); // Load xmm2 with 0.5. // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. __ addsd(xmm2, xmm3); // xmm2 now has 0.5. __ ucomisd(xmm2, xmm1); call_runtime.Branch(not_equal); // Calculates square root. // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorpd(xmm1, xmm1); __ addsd(xmm1, xmm0); __ sqrtsd(xmm1, xmm1); JumpTarget done; Label failure, success; __ bind(&allocate_return); // Make a copy of the frame to enable us to handle allocation // failure after the JumpTarget jump. VirtualFrame* clone = new VirtualFrame(frame()); __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure); __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); // Remove the two original values from the frame - we only need those // in the case where we branch to runtime. frame()->Drop(2); exponent.Unuse(); base.Unuse(); done.Jump(&answer); // Use the copy of the original frame as our current frame. RegisterFile empty_regs; SetFrame(clone, &empty_regs); // If we experience an allocation failure we branch to runtime. __ bind(&failure); call_runtime.Bind(); answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); done.Bind(&answer); frame()->Push(&answer); } void CodeGenerator::GenerateMathSin(ZoneList* args) { ASSERT_EQ(args->length(), 1); Load(args->at(0)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::TAGGED); Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::GenerateMathCos(ZoneList* args) { ASSERT_EQ(args->length(), 1); Load(args->at(0)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::TAGGED); Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::GenerateMathLog(ZoneList* args) { ASSERT_EQ(args->length(), 1); Load(args->at(0)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::TAGGED); Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } // Generates the Math.sqrt method. Please note - this function assumes that // the callsite has executed ToNumber on the argument. void CodeGenerator::GenerateMathSqrt(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); // Leave original value on the frame if we need to call runtime. frame()->Dup(); Result result = frame()->Pop(); result.ToRegister(); frame()->Spill(result.reg()); Label runtime; Label non_smi; Label load_done; JumpTarget end; __ JumpIfNotSmi(result.reg(), &non_smi); __ SmiToInteger32(result.reg(), result.reg()); __ cvtlsi2sd(xmm0, result.reg()); __ jmp(&load_done); __ bind(&non_smi); __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &runtime); __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); __ bind(&load_done); __ sqrtsd(xmm0, xmm0); // A copy of the virtual frame to allow us to go to runtime after the // JumpTarget jump. Result scratch = allocator()->Allocate(); VirtualFrame* clone = new VirtualFrame(frame()); __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime); __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); frame()->Drop(1); scratch.Unuse(); end.Jump(&result); // We only branch to runtime if we have an allocation error. // Use the copy of the original frame as our current frame. RegisterFile empty_regs; SetFrame(clone, &empty_regs); __ bind(&runtime); result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); end.Bind(&result); frame()->Push(&result); } void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); Result right_res = frame_->Pop(); Result left_res = frame_->Pop(); right_res.ToRegister(); left_res.ToRegister(); Result tmp_res = allocator()->Allocate(); ASSERT(tmp_res.is_valid()); Register right = right_res.reg(); Register left = left_res.reg(); Register tmp = tmp_res.reg(); right_res.Unuse(); left_res.Unuse(); tmp_res.Unuse(); __ cmpq(left, right); destination()->true_target()->Branch(equal); // Fail if either is a non-HeapObject. Condition either_smi = masm()->CheckEitherSmi(left, right, tmp); destination()->false_target()->Branch(either_smi); __ movq(tmp, FieldOperand(left, HeapObject::kMapOffset)); __ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset), Immediate(JS_REGEXP_TYPE)); destination()->false_target()->Branch(not_equal); __ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset)); destination()->false_target()->Branch(not_equal); __ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset)); __ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset)); destination()->Split(equal); } void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ testl(FieldOperand(value.reg(), String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); value.Unuse(); destination()->Split(zero); } void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result string = frame_->Pop(); string.ToRegister(); Result number = allocator()->Allocate(); ASSERT(number.is_valid()); __ movl(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset)); __ IndexFromHash(number.reg(), number.reg()); string.Unuse(); frame_->Push(&number); } void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList* args) { frame_->Push(Factory::undefined_value()); } void CodeGenerator::VisitCallRuntime(CallRuntime* node) { if (CheckForInlineRuntimeCall(node)) { return; } ZoneList* args = node->arguments(); Comment cmnt(masm_, "[ CallRuntime"); Runtime::Function* function = node->function(); if (function == NULL) { // Push the builtins object found in the current global object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), GlobalObjectOperand()); __ movq(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); frame_->Push(&temp); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } if (function == NULL) { // Call the JS runtime function. frame_->Push(node->name()); Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting_); frame_->RestoreContextRegister(); frame_->Push(&answer); } else { // Call the C runtime function. Result answer = frame_->CallRuntime(function, arg_count); frame_->Push(&answer); } } void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { Comment cmnt(masm_, "[ UnaryOperation"); Token::Value op = node->op(); if (op == Token::NOT) { // Swap the true and false targets but keep the same actual label // as the fall through. destination()->Invert(); LoadCondition(node->expression(), destination(), true); // Swap the labels back. destination()->Invert(); } else if (op == Token::DELETE) { Property* property = node->expression()->AsProperty(); if (property != NULL) { Load(property->obj()); Load(property->key()); frame_->Push(Smi::FromInt(strict_mode_flag())); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3); frame_->Push(&answer); return; } Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); if (variable != NULL) { // Delete of an unqualified identifier is disallowed in strict mode // but "delete this" is. ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); Slot* slot = variable->AsSlot(); if (variable->is_global()) { LoadGlobal(); frame_->Push(variable->name()); frame_->Push(Smi::FromInt(kNonStrictMode)); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3); frame_->Push(&answer); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { // Call the runtime to delete from the context holding the named // variable. Sync the virtual frame eagerly so we can push the // arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(variable->name()); Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); frame_->Push(&answer); } else { // Default: Result of deleting non-global, not dynamically // introduced variables is false. frame_->Push(Factory::false_value()); } } else { // Default: Result of deleting expressions is true. Load(node->expression()); // may have side-effects frame_->SetElementAt(0, Factory::true_value()); } } else if (op == Token::TYPEOF) { // Special case for loading the typeof expression; see comment on // LoadTypeofExpression(). LoadTypeofExpression(node->expression()); Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); frame_->Push(&answer); } else if (op == Token::VOID) { Expression* expression = node->expression(); if (expression && expression->AsLiteral() && ( expression->AsLiteral()->IsTrue() || expression->AsLiteral()->IsFalse() || expression->AsLiteral()->handle()->IsNumber() || expression->AsLiteral()->handle()->IsString() || expression->AsLiteral()->handle()->IsJSRegExp() || expression->AsLiteral()->IsNull())) { // Omit evaluating the value of the primitive literal. // It will be discarded anyway, and can have no side effect. frame_->Push(Factory::undefined_value()); } else { Load(node->expression()); frame_->SetElementAt(0, Factory::undefined_value()); } } else { bool can_overwrite = node->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; bool no_negative_zero = node->expression()->no_negative_zero(); Load(node->expression()); switch (op) { case Token::NOT: case Token::DELETE: case Token::TYPEOF: UNREACHABLE(); // handled above break; case Token::SUB: { GenericUnaryOpStub stub( Token::SUB, overwrite, NO_UNARY_FLAGS, no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); Result operand = frame_->Pop(); Result answer = frame_->CallStub(&stub, &operand); answer.set_type_info(TypeInfo::Number()); frame_->Push(&answer); break; } case Token::BIT_NOT: { // Smi check. JumpTarget smi_label; JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); Condition is_smi = masm_->CheckSmi(operand.reg()); smi_label.Branch(is_smi, &operand); GenericUnaryOpStub stub(Token::BIT_NOT, overwrite, NO_UNARY_SMI_CODE_IN_STUB); Result answer = frame_->CallStub(&stub, &operand); continue_label.Jump(&answer); smi_label.Bind(&answer); answer.ToRegister(); frame_->Spill(answer.reg()); __ SmiNot(answer.reg(), answer.reg()); continue_label.Bind(&answer); answer.set_type_info(TypeInfo::Smi()); frame_->Push(&answer); break; } case Token::ADD: { // Smi check. JumpTarget continue_label; Result operand = frame_->Pop(); TypeInfo operand_info = operand.type_info(); operand.ToRegister(); Condition is_smi = masm_->CheckSmi(operand.reg()); continue_label.Branch(is_smi, &operand); frame_->Push(&operand); Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1); continue_label.Bind(&answer); if (operand_info.IsSmi()) { answer.set_type_info(TypeInfo::Smi()); } else if (operand_info.IsInteger32()) { answer.set_type_info(TypeInfo::Integer32()); } else { answer.set_type_info(TypeInfo::Number()); } frame_->Push(&answer); break; } default: UNREACHABLE(); } } } // The value in dst was optimistically incremented or decremented. // The result overflowed or was not smi tagged. Call into the runtime // to convert the argument to a number, and call the specialized add // or subtract stub. The result is left in dst. class DeferredPrefixCountOperation: public DeferredCode { public: DeferredPrefixCountOperation(Register dst, bool is_increment, TypeInfo input_type) : dst_(dst), is_increment_(is_increment), input_type_(input_type) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; bool is_increment_; TypeInfo input_type_; }; void DeferredPrefixCountOperation::Generate() { Register left; if (input_type_.IsNumber()) { left = dst_; } else { __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); left = rax; } GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS, TypeInfo::Number()); stub.GenerateCall(masm_, left, Smi::FromInt(1)); if (!dst_.is(rax)) __ movq(dst_, rax); } // The value in dst was optimistically incremented or decremented. // The result overflowed or was not smi tagged. Call into the runtime // to convert the argument to a number. Update the original value in // old. Call the specialized add or subtract stub. The result is // left in dst. class DeferredPostfixCountOperation: public DeferredCode { public: DeferredPostfixCountOperation(Register dst, Register old, bool is_increment, TypeInfo input_type) : dst_(dst), old_(old), is_increment_(is_increment), input_type_(input_type) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; Register old_; bool is_increment_; TypeInfo input_type_; }; void DeferredPostfixCountOperation::Generate() { Register left; if (input_type_.IsNumber()) { __ push(dst_); // Save the input to use as the old value. left = dst_; } else { __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ push(rax); // Save the result of ToNumber to use as the old value. left = rax; } GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS, TypeInfo::Number()); stub.GenerateCall(masm_, left, Smi::FromInt(1)); if (!dst_.is(rax)) __ movq(dst_, rax); __ pop(old_); } void CodeGenerator::VisitCountOperation(CountOperation* node) { Comment cmnt(masm_, "[ CountOperation"); bool is_postfix = node->is_postfix(); bool is_increment = node->op() == Token::INC; Variable* var = node->expression()->AsVariableProxy()->AsVariable(); bool is_const = (var != NULL && var->mode() == Variable::CONST); // Postfix operations need a stack slot under the reference to hold // the old value while the new value is being stored. This is so that // in the case that storing the new value requires a call, the old // value will be in the frame to be spilled. if (is_postfix) frame_->Push(Smi::FromInt(0)); // A constant reference is not saved to, so the reference is not a // compound assignment reference. { Reference target(this, node->expression(), !is_const); if (target.is_illegal()) { // Spoof the virtual frame to have the expected height (one higher // than on entry). if (!is_postfix) frame_->Push(Smi::FromInt(0)); return; } target.TakeValue(); Result new_value = frame_->Pop(); new_value.ToRegister(); Result old_value; // Only allocated in the postfix case. if (is_postfix) { // Allocate a temporary to preserve the old value. old_value = allocator_->Allocate(); ASSERT(old_value.is_valid()); __ movq(old_value.reg(), new_value.reg()); // The return value for postfix operations is ToNumber(input). // Keep more precise type info if the input is some kind of // number already. If the input is not a number we have to wait // for the deferred code to convert it. if (new_value.type_info().IsNumber()) { old_value.set_type_info(new_value.type_info()); } } // Ensure the new value is writable. frame_->Spill(new_value.reg()); DeferredCode* deferred = NULL; if (is_postfix) { deferred = new DeferredPostfixCountOperation(new_value.reg(), old_value.reg(), is_increment, new_value.type_info()); } else { deferred = new DeferredPrefixCountOperation(new_value.reg(), is_increment, new_value.type_info()); } if (new_value.is_smi()) { if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); } } else { __ JumpIfNotSmi(new_value.reg(), deferred->entry_label()); } if (is_increment) { __ SmiAddConstant(new_value.reg(), new_value.reg(), Smi::FromInt(1), deferred->entry_label()); } else { __ SmiSubConstant(new_value.reg(), new_value.reg(), Smi::FromInt(1), deferred->entry_label()); } deferred->BindExit(); // Postfix count operations return their input converted to // number. The case when the input is already a number is covered // above in the allocation code for old_value. if (is_postfix && !new_value.type_info().IsNumber()) { old_value.set_type_info(TypeInfo::Number()); } new_value.set_type_info(TypeInfo::Number()); // Postfix: store the old value in the allocated slot under the // reference. if (is_postfix) frame_->SetElementAt(target.size(), &old_value); frame_->Push(&new_value); // Non-constant: update the reference. if (!is_const) target.SetValue(NOT_CONST_INIT); } // Postfix: drop the new value and use the old. if (is_postfix) frame_->Drop(); } void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { // According to ECMA-262 section 11.11, page 58, the binary logical // operators must yield the result of one of the two expressions // before any ToBoolean() conversions. This means that the value // produced by a && or || operator is not necessarily a boolean. // NOTE: If the left hand side produces a materialized value (not // control flow), we force the right hand side to do the same. This // is necessary because we assume that if we get control flow on the // last path out of an expression we got it on all paths. if (node->op() == Token::AND) { JumpTarget is_true; ControlDestination dest(&is_true, destination()->false_target(), true); LoadCondition(node->left(), &dest, false); if (dest.false_was_fall_through()) { // The current false target was used as the fall-through. If // there are no dangling jumps to is_true then the left // subexpression was unconditionally false. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_true.is_linked()) { // We need to compile the right subexpression. If the jump to // the current false target was a forward jump then we have a // valid frame, we have just bound the false target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->false_target()->Unuse(); destination()->false_target()->Jump(); } is_true.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have actually just jumped to or bound the current false // target but the current control destination is not marked as // used. destination()->Use(false); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_true // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_true // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'false' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&pop_and_continue, &exit, true); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_true.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else { ASSERT(node->op() == Token::OR); JumpTarget is_false; ControlDestination dest(destination()->true_target(), &is_false, false); LoadCondition(node->left(), &dest, false); if (dest.true_was_fall_through()) { // The current true target was used as the fall-through. If // there are no dangling jumps to is_false then the left // subexpression was unconditionally true. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_false.is_linked()) { // We need to compile the right subexpression. If the jump to // the current true target was a forward jump then we have a // valid frame, we have just bound the true target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->true_target()->Unuse(); destination()->true_target()->Jump(); } is_false.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have just jumped to or bound the current true target but // the current control destination is not marked as used. destination()->Use(true); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_false // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_false // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'true' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&exit, &pop_and_continue, false); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_false.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } } void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { Comment cmnt(masm_, "[ BinaryOperation"); if (node->op() == Token::AND || node->op() == Token::OR) { GenerateLogicalBooleanOperation(node); } else { // NOTE: The code below assumes that the slow cases (calls to runtime) // never return a constant/immutable object. OverwriteMode overwrite_mode = NO_OVERWRITE; if (node->left()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_LEFT; } else if (node->right()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_RIGHT; } if (node->left()->IsTrivial()) { Load(node->right()); Result right = frame_->Pop(); frame_->Push(node->left()); frame_->Push(&right); } else { Load(node->left()); Load(node->right()); } GenericBinaryOperation(node, overwrite_mode); } } void CodeGenerator::VisitThisFunction(ThisFunction* node) { frame_->PushFunction(); } void CodeGenerator::VisitCompareOperation(CompareOperation* node) { Comment cmnt(masm_, "[ CompareOperation"); // Get the expressions from the node. Expression* left = node->left(); Expression* right = node->right(); Token::Value op = node->op(); // To make typeof testing for natives implemented in JavaScript really // efficient, we generate special code for expressions of the form: // 'typeof == '. UnaryOperation* operation = left->AsUnaryOperation(); if ((op == Token::EQ || op == Token::EQ_STRICT) && (operation != NULL && operation->op() == Token::TYPEOF) && (right->AsLiteral() != NULL && right->AsLiteral()->handle()->IsString())) { Handle check(Handle::cast(right->AsLiteral()->handle())); // Load the operand and move it to a register. LoadTypeofExpression(operation->expression()); Result answer = frame_->Pop(); answer.ToRegister(); if (check->Equals(Heap::number_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->true_target()->Branch(is_smi); frame_->Spill(answer.reg()); __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::string_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); // It can be an undetectable string object. __ movq(kScratchRegister, FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE); answer.Unuse(); destination()->Split(below); // Unsigned byte comparison needed. } else if (check->Equals(Heap::boolean_symbol())) { __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex); destination()->true_target()->Branch(equal); __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::undefined_symbol())) { __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex); destination()->true_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); // It can be an undetectable object. __ movq(kScratchRegister, FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); answer.Unuse(); destination()->Split(not_zero); } else if (check->Equals(Heap::function_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); frame_->Spill(answer.reg()); __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); destination()->true_target()->Branch(equal); // Regular expressions are callable so typeof == 'function'. __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::object_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex); destination()->true_target()->Branch(equal); // Regular expressions are typeof == 'function', not 'object'. __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister); destination()->false_target()->Branch(equal); // It can be an undetectable object. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(below); __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); answer.Unuse(); destination()->Split(below_equal); } else { // Uncommon case: typeof testing against a string literal that is // never returned from the typeof operator. answer.Unuse(); destination()->Goto(false); } return; } Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = equal; break; case Token::LT: cc = less; break; case Token::GT: cc = greater; break; case Token::LTE: cc = less_equal; break; case Token::GTE: cc = greater_equal; break; case Token::IN: { Load(left); Load(right); Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); frame_->Push(&answer); // push the result return; } case Token::INSTANCEOF: { Load(left); Load(right); InstanceofStub stub(InstanceofStub::kNoFlags); Result answer = frame_->CallStub(&stub, 2); answer.ToRegister(); __ testq(answer.reg(), answer.reg()); answer.Unuse(); destination()->Split(zero); return; } default: UNREACHABLE(); } if (left->IsTrivial()) { Load(right); Result right_result = frame_->Pop(); frame_->Push(left); frame_->Push(&right_result); } else { Load(left); Load(right); } Comparison(node, cc, strict, destination()); } void CodeGenerator::VisitCompareToNull(CompareToNull* node) { Comment cmnt(masm_, "[ CompareToNull"); Load(node->expression()); Result operand = frame_->Pop(); operand.ToRegister(); __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex); if (node->is_strict()) { operand.Unuse(); destination()->Split(equal); } else { // The 'null' value is only equal to 'undefined' if using non-strict // comparisons. destination()->true_target()->Branch(equal); __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex); destination()->true_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(operand.reg()); destination()->false_target()->Branch(is_smi); // It can be an undetectable object. // Use a scratch register in preference to spilling operand.reg(). Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), FieldOperand(operand.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); temp.Unuse(); operand.Unuse(); destination()->Split(not_zero); } } #ifdef DEBUG bool CodeGenerator::HasValidEntryRegisters() { return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0)) && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0)) && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0)) && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0)) && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0)) && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0)) && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0)) && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0)) && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0)) && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0)); } #endif // Emit a LoadIC call to get the value from receiver and leave it in // dst. The receiver register is restored after the call. class DeferredReferenceGetNamedValue: public DeferredCode { public: DeferredReferenceGetNamedValue(Register dst, Register receiver, Handle name) : dst_(dst), receiver_(receiver), name_(name) { set_comment("[ DeferredReferenceGetNamedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Handle name_; }; void DeferredReferenceGetNamedValue::Generate() { if (!receiver_.is(rax)) { __ movq(rax, receiver_); } __ Move(rcx, name_); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // The call must be followed by a test rax instruction to indicate // that the inobject property case was inlined. // // Store the delta to the map check instruction here in the test // instruction. Use masm_-> instead of the __ macro since the // latter can't return a value. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->testl(rax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::named_load_inline_miss, 1); if (!dst_.is(rax)) __ movq(dst_, rax); } class DeferredReferenceGetKeyedValue: public DeferredCode { public: explicit DeferredReferenceGetKeyedValue(Register dst, Register receiver, Register key) : dst_(dst), receiver_(receiver), key_(key) { set_comment("[ DeferredReferenceGetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Register key_; }; void DeferredReferenceGetKeyedValue::Generate() { if (receiver_.is(rdx)) { if (!key_.is(rax)) { __ movq(rax, key_); } // else do nothing. } else if (receiver_.is(rax)) { if (key_.is(rdx)) { __ xchg(rax, rdx); } else if (key_.is(rax)) { __ movq(rdx, receiver_); } else { __ movq(rdx, receiver_); __ movq(rax, key_); } } else if (key_.is(rax)) { __ movq(rdx, receiver_); } else { __ movq(rax, key_); __ movq(rdx, receiver_); } // Calculate the delta from the IC call instruction to the map check // movq instruction in the inlined version. This delta is stored in // a test(rax, delta) instruction after the call so that we can find // it in the IC initialization code and patch the movq instruction. // This means that we cannot allow test instructions after calls to // KeyedLoadIC stubs in other places. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the __ // macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. // TODO(X64): Consider whether it's worth switching the test to a // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't // be generated normally. masm_->testl(rax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); if (!dst_.is(rax)) __ movq(dst_, rax); } class DeferredReferenceSetKeyedValue: public DeferredCode { public: DeferredReferenceSetKeyedValue(Register value, Register key, Register receiver, StrictModeFlag strict_mode) : value_(value), key_(key), receiver_(receiver), strict_mode_(strict_mode) { set_comment("[ DeferredReferenceSetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Register value_; Register key_; Register receiver_; Label patch_site_; StrictModeFlag strict_mode_; }; void DeferredReferenceSetKeyedValue::Generate() { __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); // Move value, receiver, and key to registers rax, rdx, and rcx, as // the IC stub expects. // Move value to rax, using xchg if the receiver or key is in rax. if (!value_.is(rax)) { if (!receiver_.is(rax) && !key_.is(rax)) { __ movq(rax, value_); } else { __ xchg(rax, value_); // Update receiver_ and key_ if they are affected by the swap. if (receiver_.is(rax)) { receiver_ = value_; } else if (receiver_.is(value_)) { receiver_ = rax; } if (key_.is(rax)) { key_ = value_; } else if (key_.is(value_)) { key_ = rax; } } } // Value is now in rax. Its original location is remembered in value_, // and the value is restored to value_ before returning. // The variables receiver_ and key_ are not preserved. // Move receiver and key to rdx and rcx, swapping if necessary. if (receiver_.is(rdx)) { if (!key_.is(rcx)) { __ movq(rcx, key_); } // Else everything is already in the right place. } else if (receiver_.is(rcx)) { if (key_.is(rdx)) { __ xchg(rcx, rdx); } else if (key_.is(rcx)) { __ movq(rdx, receiver_); } else { __ movq(rdx, receiver_); __ movq(rcx, key_); } } else if (key_.is(rcx)) { __ movq(rdx, receiver_); } else { __ movq(rcx, key_); __ movq(rdx, receiver_); } // Call the IC stub. Handle ic(Builtins::builtin( (strict_mode_ == kStrictMode) ? Builtins::KeyedStoreIC_Initialize_Strict : Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instructions (initial movq) // to the test instruction. We use masm_-> directly here instead of the // __ macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->testl(rax, Immediate(-delta_to_patch_site)); // Restore value (returned from store IC). if (!value_.is(rax)) __ movq(value_, rax); } Result CodeGenerator::EmitNamedLoad(Handle name, bool is_contextual) { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Do not inline the inobject property case for loads from the global // object. Also do not inline for unoptimized code. This saves time // in the code generator. Unoptimized code is toplevel code or code // that is not in a loop. if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { Comment cmnt(masm(), "[ Load from named Property"); frame()->Push(name); RelocInfo::Mode mode = is_contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; result = frame()->CallLoadIC(mode); // A test rax instruction following the call signals that the // inobject property case was inlined. Ensure that there is not // a test rax instruction here. __ nop(); } else { // Inline the inobject property case. Comment cmnt(masm(), "[ Inlined named property load"); Result receiver = frame()->Pop(); receiver.ToRegister(); result = allocator()->Allocate(); ASSERT(result.is_valid()); // Cannot use r12 for receiver, because that changes // the distance between a call and a fixup location, // due to a special encoding of r12 as r/m in a ModR/M byte. if (receiver.reg().is(r12)) { frame()->Spill(receiver.reg()); // It will be overwritten with result. // Swap receiver and value. __ movq(result.reg(), receiver.reg()); Result temp = receiver; receiver = result; result = temp; } DeferredReferenceGetNamedValue* deferred = new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name); // Check that the receiver is a heap object. __ JumpIfSmi(receiver.reg(), deferred->entry_label()); __ bind(deferred->patch_site()); // This is the map check instruction that will be patched (so we can't // use the double underscore macro that may insert instructions). // Initially use an invalid map to force a failure. masm()->Move(kScratchRegister, Factory::null_value()); masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset), kScratchRegister); // This branch is always a forwards branch so it's always a fixed // size which allows the assert below to succeed and patching to work. // Don't use deferred->Branch(...), since that might add coverage code. masm()->j(not_equal, deferred->entry_label()); // The delta from the patch label to the load offset must be // statically known. ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == LoadIC::kOffsetToLoadInstruction); // The initial (invalid) offset has to be large enough to force // a 32-bit instruction encoding to allow patching with an // arbitrary offset. Use kMaxInt (minus kHeapObjectTag). int offset = kMaxInt; masm()->movq(result.reg(), FieldOperand(receiver.reg(), offset)); __ IncrementCounter(&Counters::named_load_inline, 1); deferred->BindExit(); } ASSERT(frame()->height() == original_height - 1); return result; } Result CodeGenerator::EmitNamedStore(Handle name, bool is_contextual) { #ifdef DEBUG int expected_height = frame()->height() - (is_contextual ? 1 : 2); #endif Result result; if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); // A test rax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test rax // instruction here. __ nop(); } else { // Inline the in-object property case. JumpTarget slow, done; Label patch_site; // Get the value and receiver from the stack. Result value = frame()->Pop(); value.ToRegister(); Result receiver = frame()->Pop(); receiver.ToRegister(); // Allocate result register. result = allocator()->Allocate(); ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid()); // Cannot use r12 for receiver, because that changes // the distance between a call and a fixup location, // due to a special encoding of r12 as r/m in a ModR/M byte. if (receiver.reg().is(r12)) { frame()->Spill(receiver.reg()); // It will be overwritten with result. // Swap receiver and value. __ movq(result.reg(), receiver.reg()); Result temp = receiver; receiver = result; result = temp; } // Check that the receiver is a heap object. Condition is_smi = masm()->CheckSmi(receiver.reg()); slow.Branch(is_smi, &value, &receiver); // This is the map check instruction that will be patched. // Initially use an invalid map to force a failure. The exact // instruction sequence is important because we use the // kOffsetToStoreInstruction constant for patching. We avoid using // the __ macro for the following two instructions because it // might introduce extra instructions. __ bind(&patch_site); masm()->Move(kScratchRegister, Factory::null_value()); masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset), kScratchRegister); // This branch is always a forwards branch so it's always a fixed size // which allows the assert below to succeed and patching to work. slow.Branch(not_equal, &value, &receiver); // The delta from the patch label to the store offset must be // statically known. ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) == StoreIC::kOffsetToStoreInstruction); // The initial (invalid) offset has to be large enough to force a 32-bit // instruction encoding to allow patching with an arbitrary offset. Use // kMaxInt (minus kHeapObjectTag). int offset = kMaxInt; __ movq(FieldOperand(receiver.reg(), offset), value.reg()); __ movq(result.reg(), value.reg()); // Allocate scratch register for write barrier. Result scratch = allocator()->Allocate(); ASSERT(scratch.is_valid()); // The write barrier clobbers all input registers, so spill the // receiver and the value. frame_->Spill(receiver.reg()); frame_->Spill(value.reg()); // If the receiver and the value share a register allocate a new // register for the receiver. if (receiver.reg().is(value.reg())) { receiver = allocator()->Allocate(); ASSERT(receiver.is_valid()); __ movq(receiver.reg(), value.reg()); } // Update the write barrier. To save instructions in the inlined // version we do not filter smis. Label skip_write_barrier; __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier); int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site); __ lea(scratch.reg(), Operand(receiver.reg(), offset)); __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg()); if (FLAG_debug_code) { __ movq(receiver.reg(), BitCast(kZapValue), RelocInfo::NONE); __ movq(value.reg(), BitCast(kZapValue), RelocInfo::NONE); __ movq(scratch.reg(), BitCast(kZapValue), RelocInfo::NONE); } __ bind(&skip_write_barrier); value.Unuse(); scratch.Unuse(); receiver.Unuse(); done.Jump(&result); slow.Bind(&value, &receiver); frame()->Push(&receiver); frame()->Push(&value); result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); // Encode the offset to the map check instruction and the offset // to the write barrier store address computation in a test rax // instruction. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site); __ testl(rax, Immediate((delta_to_record_write << 16) | delta_to_patch_site)); done.Bind(&result); } ASSERT_EQ(expected_height, frame()->height()); return result; } Result CodeGenerator::EmitKeyedLoad() { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Inline array load code if inside of a loop. We do not know // the receiver map yet, so we initially generate the code with // a check against an invalid map. In the inline cache code, we // patch the map check if appropriate. if (loop_nesting() > 0) { Comment cmnt(masm_, "[ Inlined load from keyed Property"); // Use a fresh temporary to load the elements without destroying // the receiver which is needed for the deferred slow case. // Allocate the temporary early so that we use rax if it is free. Result elements = allocator()->Allocate(); ASSERT(elements.is_valid()); Result key = frame_->Pop(); Result receiver = frame_->Pop(); key.ToRegister(); receiver.ToRegister(); // If key and receiver are shared registers on the frame, their values will // be automatically saved and restored when going to deferred code. // The result is returned in elements, which is not shared. DeferredReferenceGetKeyedValue* deferred = new DeferredReferenceGetKeyedValue(elements.reg(), receiver.reg(), key.reg()); __ JumpIfSmi(receiver.reg(), deferred->entry_label()); // Check that the receiver has the expected map. // Initially, use an invalid map. The map is patched in the IC // initialization code. __ bind(deferred->patch_site()); // Use masm-> here instead of the double underscore macro since extra // coverage code can interfere with the patching. Do not use a load // from the root array to load null_value, since the load must be patched // with the expected receiver map, which is not in the root array. masm_->movq(kScratchRegister, Factory::null_value(), RelocInfo::EMBEDDED_OBJECT); masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset), kScratchRegister); deferred->Branch(not_equal); __ JumpUnlessNonNegativeSmi(key.reg(), deferred->entry_label()); // Get the elements array from the receiver. __ movq(elements.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); __ AssertFastElements(elements.reg()); // Check that key is within bounds. __ SmiCompare(key.reg(), FieldOperand(elements.reg(), FixedArray::kLengthOffset)); deferred->Branch(above_equal); // Load and check that the result is not the hole. We could // reuse the index or elements register for the value. // // TODO(206): Consider whether it makes sense to try some // heuristic about which register to reuse. For example, if // one is rax, the we can reuse that one because the value // coming from the deferred code will be in rax. SmiIndex index = masm_->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2); __ movq(elements.reg(), FieldOperand(elements.reg(), index.reg, index.scale, FixedArray::kHeaderSize)); result = elements; __ CompareRoot(result.reg(), Heap::kTheHoleValueRootIndex); deferred->Branch(equal); __ IncrementCounter(&Counters::keyed_load_inline, 1); deferred->BindExit(); } else { Comment cmnt(masm_, "[ Load from keyed Property"); result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed load. The explicit nop instruction is here because // the push that follows might be peep-hole optimized away. __ nop(); } ASSERT(frame()->height() == original_height - 2); return result; } Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Generate inlined version of the keyed store if the code is in a loop // and the key is likely to be a smi. if (loop_nesting() > 0 && key_type->IsLikelySmi()) { Comment cmnt(masm(), "[ Inlined store to keyed Property"); // Get the receiver, key and value into registers. result = frame()->Pop(); Result key = frame()->Pop(); Result receiver = frame()->Pop(); Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); Result tmp2 = allocator_->Allocate(); ASSERT(tmp2.is_valid()); // Determine whether the value is a constant before putting it in a // register. bool value_is_constant = result.is_constant(); // Make sure that value, key and receiver are in registers. result.ToRegister(); key.ToRegister(); receiver.ToRegister(); DeferredReferenceSetKeyedValue* deferred = new DeferredReferenceSetKeyedValue(result.reg(), key.reg(), receiver.reg(), strict_mode_flag()); // Check that the receiver is not a smi. __ JumpIfSmi(receiver.reg(), deferred->entry_label()); // Check that the key is a smi. if (!key.is_smi()) { __ JumpIfNotSmi(key.reg(), deferred->entry_label()); } else if (FLAG_debug_code) { __ AbortIfNotSmi(key.reg()); } // Check that the receiver is a JSArray. __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister); deferred->Branch(not_equal); // Check that the key is within bounds. Both the key and the length of // the JSArray are smis. Use unsigned comparison to handle negative keys. __ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset), key.reg()); deferred->Branch(below_equal); // Get the elements array from the receiver and check that it is not a // dictionary. __ movq(tmp.reg(), FieldOperand(receiver.reg(), JSArray::kElementsOffset)); // Check whether it is possible to omit the write barrier. If the elements // array is in new space or the value written is a smi we can safely update // the elements array without write barrier. Label in_new_space; __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space); if (!value_is_constant) { __ JumpIfNotSmi(result.reg(), deferred->entry_label()); } __ bind(&in_new_space); // Bind the deferred code patch site to be able to locate the fixed // array map comparison. When debugging, we patch this comparison to // always fail so that we will hit the IC call in the deferred code // which will allow the debugger to break for fast case stores. __ bind(deferred->patch_site()); // Avoid using __ to ensure the distance from patch_site // to the map address is always the same. masm()->movq(kScratchRegister, Factory::fixed_array_map(), RelocInfo::EMBEDDED_OBJECT); __ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset), kScratchRegister); deferred->Branch(not_equal); // Store the value. SmiIndex index = masm()->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2); __ movq(FieldOperand(tmp.reg(), index.reg, index.scale, FixedArray::kHeaderSize), result.reg()); __ IncrementCounter(&Counters::keyed_store_inline, 1); deferred->BindExit(); } else { result = frame()->CallKeyedStoreIC(strict_mode_flag()); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed store. __ nop(); } ASSERT(frame()->height() == original_height - 3); return result; } #undef __ #define __ ACCESS_MASM(masm) Handle Reference::GetName() { ASSERT(type_ == NAMED); Property* property = expression_->AsProperty(); if (property == NULL) { // Global variable reference treated as a named property reference. VariableProxy* proxy = expression_->AsVariableProxy(); ASSERT(proxy->AsVariable() != NULL); ASSERT(proxy->AsVariable()->is_global()); return proxy->name(); } else { Literal* raw_name = property->key()->AsLiteral(); ASSERT(raw_name != NULL); return Handle(String::cast(*raw_name->handle())); } } void Reference::GetValue() { ASSERT(!cgen_->in_spilled_code()); ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); // Record the source position for the property load. Property* property = expression_->AsProperty(); if (property != NULL) { cgen_->CodeForSourcePosition(property->position()); } switch (type_) { case SLOT: { Comment cmnt(masm, "[ Load from Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); ASSERT(slot != NULL); cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); break; } case NAMED: { Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); if (persist_after_get_) { cgen_->frame()->Dup(); } Result result = cgen_->EmitNamedLoad(GetName(), is_global); cgen_->frame()->Push(&result); break; } case KEYED: { // A load of a bare identifier (load from global) cannot be keyed. ASSERT(expression_->AsVariableProxy()->AsVariable() == NULL); if (persist_after_get_) { cgen_->frame()->PushElementAt(1); cgen_->frame()->PushElementAt(1); } Result value = cgen_->EmitKeyedLoad(); cgen_->frame()->Push(&value); break; } default: UNREACHABLE(); } if (!persist_after_get_) { set_unloaded(); } } void Reference::TakeValue() { // TODO(X64): This function is completely architecture independent. Move // it somewhere shared. // For non-constant frame-allocated slots, we invalidate the value in the // slot. For all others, we fall back on GetValue. ASSERT(!cgen_->in_spilled_code()); ASSERT(!is_illegal()); if (type_ != SLOT) { GetValue(); return; } Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); ASSERT(slot != NULL); if (slot->type() == Slot::LOOKUP || slot->type() == Slot::CONTEXT || slot->var()->mode() == Variable::CONST || slot->is_arguments()) { GetValue(); return; } // Only non-constant, frame-allocated parameters and locals can reach // here. Be careful not to use the optimizations for arguments // object access since it may not have been initialized yet. ASSERT(!slot->is_arguments()); if (slot->type() == Slot::PARAMETER) { cgen_->frame()->TakeParameterAt(slot->index()); } else { ASSERT(slot->type() == Slot::LOCAL); cgen_->frame()->TakeLocalAt(slot->index()); } ASSERT(persist_after_get_); // Do not unload the reference, because it is used in SetValue. } void Reference::SetValue(InitState init_state) { ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); switch (type_) { case SLOT: { Comment cmnt(masm, "[ Store to Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); ASSERT(slot != NULL); cgen_->StoreToSlot(slot, init_state); set_unloaded(); break; } case NAMED: { Comment cmnt(masm, "[ Store to named Property"); Result answer = cgen_->EmitNamedStore(GetName(), false); cgen_->frame()->Push(&answer); set_unloaded(); break; } case KEYED: { Comment cmnt(masm, "[ Store to keyed Property"); Property* property = expression()->AsProperty(); ASSERT(property != NULL); Result answer = cgen_->EmitKeyedStore(property->key()->type()); cgen_->frame()->Push(&answer); set_unloaded(); break; } case UNLOADED: case ILLEGAL: UNREACHABLE(); } } Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub, Result* left, Result* right) { if (stub->ArgsInRegistersSupported()) { stub->SetArgsInRegisters(); return frame_->CallStub(stub, left, right); } else { frame_->Push(left); frame_->Push(right); return frame_->CallStub(stub, 2); } } #undef __ #define __ masm. #ifdef _WIN64 typedef double (*ModuloFunction)(double, double); // Define custom fmod implementation. ModuloFunction CreateModuloFunction() { size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler masm(buffer, static_cast(actual_size)); // Generated code is put into a fixed, unmovable, buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // Windows 64 ABI passes double arguments in xmm0, xmm1 and // returns result in xmm0. // Argument backing space is allocated on the stack above // the return address. // Compute x mod y. // Load y and x (use argument backing store as temporary storage). __ movsd(Operand(rsp, kPointerSize * 2), xmm1); __ movsd(Operand(rsp, kPointerSize), xmm0); __ fld_d(Operand(rsp, kPointerSize * 2)); __ fld_d(Operand(rsp, kPointerSize)); // Clear exception flags before operation. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ testb(rax, Immediate(5)); __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem(); __ fwait(); __ fnstsw_ax(); __ testl(rax, Immediate(0x400 /* C2 */)); // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } Label valid_result; Label return_result; // If Invalid Operand or Zero Division exceptions are set, // return NaN. __ testb(rax, Immediate(5)); __ j(zero, &valid_result); __ fstp(0); // Drop result in st(0). int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000); __ movq(rcx, kNaNValue, RelocInfo::NONE); __ movq(Operand(rsp, kPointerSize), rcx); __ movsd(xmm0, Operand(rsp, kPointerSize)); __ jmp(&return_result); // If result is valid, return that. __ bind(&valid_result); __ fstp_d(Operand(rsp, kPointerSize)); __ movsd(xmm0, Operand(rsp, kPointerSize)); // Clean up FPU stack and exceptions and return xmm0 __ bind(&return_result); __ fstp(0); // Unload y. Label clear_exceptions; __ testb(rax, Immediate(0x3f /* Any Exception*/)); __ j(not_zero, &clear_exceptions); __ ret(0); __ bind(&clear_exceptions); __ fnclex(); __ ret(0); CodeDesc desc; masm.GetCode(&desc); // Call the function from C++. return FUNCTION_CAST(buffer); } #endif #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64