module Torch module NN module Init class << self def calculate_gain(nonlinearity, param: 0.01) _calculate_gain(nonlinearity, param) end def uniform!(tensor, a: 0.0, b: 1.0) _uniform!(tensor, a, b) end def normal!(tensor, mean: 0.0, std: 1.0) _normal!(tensor, mean, std) end def constant!(tensor, val) _constant!(tensor, val) end def ones!(tensor) _ones!(tensor) end def zeros!(tensor) _zeros!(tensor) end def eye!(tensor) _eye!(tensor) end def dirac!(tensor) _dirac!(tensor) end def xavier_uniform!(tensor, gain: 1.0) _xavier_uniform!(tensor, gain) end def xavier_normal!(tensor, gain: 1.0) _xavier_normal!(tensor, gain) end def kaiming_uniform!(tensor, a: 0, mode: "fan_in", nonlinearity: "leaky_relu") _kaiming_uniform!(tensor, a, mode, nonlinearity) end def kaiming_normal!(tensor, a: 0, mode: "fan_in", nonlinearity: "leaky_relu") _kaiming_normal!(tensor, a, mode, nonlinearity) end def orthogonal!(tensor, gain: 1) _orthogonal!(tensor, gain) end def sparse!(tensor, sparsity, std: 0.01) _sparse!(tensor, sparsity, std) end # TODO move to C++ when released def _calculate_fan_in_and_fan_out(tensor) dimensions = tensor.dim if dimensions < 2 raise Error, "Fan in and fan out can not be computed for tensor with fewer than 2 dimensions" end if dimensions == 2 fan_in = tensor.size(1) fan_out = tensor.size(0) else num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim > 2 receptive_field_size = tensor[0][0].numel end fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size end [fan_in, fan_out] end end end end end