#ifndef SASS_SASS_UTIL_H #define SASS_SASS_UTIL_H #include "ast.hpp" #include "node.hpp" #include "debug.hpp" namespace Sass { /* This is for ports of functions in the Sass:Util module. */ /* # Return a Node collection of all possible paths through the given Node collection of Node collections. # # @param arrs [NodeCollection>] # @return [NodeCollection>] # # @example # paths([[1, 2], [3, 4], [5]]) #=> # # [[1, 3, 5], # # [2, 3, 5], # # [1, 4, 5], # # [2, 4, 5]] */ Node paths(const Node& arrs, Context& ctx); /* This class is a default implementation of a Node comparator that can be passed to the lcs function below. It uses operator== for equality comparision. It then returns one if the Nodes are equal. */ class DefaultLcsComparator { public: bool operator()(const Node& one, const Node& two, Node& out) const { // TODO: Is this the correct C++ interpretation? // block ||= proc {|a, b| a == b && a} if (one == two) { out = one; return true; } return false; } }; typedef std::vector > LCSTable; /* This is the equivalent of ruby's Sass::Util.lcs_backtrace. # Computes a single longest common subsequence for arrays x and y. # Algorithm from http://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Reading_out_an_LCS */ template Node lcs_backtrace(const LCSTable& c, const Node& x, const Node& y, int i, int j, const ComparatorType& comparator) { DEBUG_PRINTLN(LCS, "LCSBACK: X=" << x << " Y=" << y << " I=" << i << " J=" << j) if (i == 0 || j == 0) { DEBUG_PRINTLN(LCS, "RETURNING EMPTY") return Node::createCollection(); } NodeDeque& xChildren = *(x.collection()); NodeDeque& yChildren = *(y.collection()); Node compareOut = Node::createNil(); if (comparator(xChildren[i], yChildren[j], compareOut)) { DEBUG_PRINTLN(LCS, "RETURNING AFTER ELEM COMPARE") Node result = lcs_backtrace(c, x, y, i - 1, j - 1, comparator); result.collection()->push_back(compareOut); return result; } if (c[i][j - 1] > c[i - 1][j]) { DEBUG_PRINTLN(LCS, "RETURNING AFTER TABLE COMPARE") return lcs_backtrace(c, x, y, i, j - 1, comparator); } DEBUG_PRINTLN(LCS, "FINAL RETURN") return lcs_backtrace(c, x, y, i - 1, j, comparator); } /* This is the equivalent of ruby's Sass::Util.lcs_table. # Calculates the memoization table for the Least Common Subsequence algorithm. # Algorithm from http://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Computing_the_length_of_the_LCS */ template void lcs_table(const Node& x, const Node& y, const ComparatorType& comparator, LCSTable& out) { DEBUG_PRINTLN(LCS, "LCSTABLE: X=" << x << " Y=" << y) NodeDeque& xChildren = *(x.collection()); NodeDeque& yChildren = *(y.collection()); LCSTable c(xChildren.size(), std::vector(yChildren.size())); // These shouldn't be necessary since the vector will be initialized to 0 already. // x.size.times {|i| c[i][0] = 0} // y.size.times {|j| c[0][j] = 0} for (size_t i = 1; i < xChildren.size(); i++) { for (size_t j = 1; j < yChildren.size(); j++) { Node compareOut = Node::createNil(); if (comparator(xChildren[i], yChildren[j], compareOut)) { c[i][j] = c[i - 1][j - 1] + 1; } else { c[i][j] = std::max(c[i][j - 1], c[i - 1][j]); } } } out = c; } /* This is the equivalent of ruby's Sass::Util.lcs. # Computes a single longest common subsequence for `x` and `y`. # If there are more than one longest common subsequences, # the one returned is that which starts first in `x`. # @param x [NodeCollection] # @param y [NodeCollection] # @comparator An equality check between elements of `x` and `y`. # @return [NodeCollection] The LCS http://en.wikipedia.org/wiki/Longest_common_subsequence_problem */ template Node lcs(Node& x, Node& y, const ComparatorType& comparator, Context& ctx) { DEBUG_PRINTLN(LCS, "LCS: X=" << x << " Y=" << y) Node newX = Node::createCollection(); newX.collection()->push_back(Node::createNil()); newX.plus(x); Node newY = Node::createCollection(); newY.collection()->push_back(Node::createNil()); newY.plus(y); LCSTable table; lcs_table(newX, newY, comparator, table); return lcs_backtrace(table, newX, newY, static_cast(newX.collection()->size()) - 1, static_cast(newY.collection()->size()) - 1, comparator); } /* This is the equivalent of ruby sass' Sass::Util.flatten and [].flatten. Sass::Util.flatten requires the number of levels to flatten, while [].flatten doesn't and will flatten the entire array. This function supports both. # Flattens the first `n` nested arrays. If n == -1, all arrays will be flattened # # @param arr [NodeCollection] The array to flatten # @param n [int] The number of levels to flatten # @return [NodeCollection] The flattened array */ Node flatten(Node& arr, Context& ctx, int n = -1); /* This is the equivalent of ruby's Sass::Util.group_by_to_a. # Performs the equivalent of `enum.group_by.to_a`, but with a guaranteed # order. Unlike [#hash_to_a], the resulting order isn't sorted key order; # instead, it's the same order as `#group_by` has under Ruby 1.9 (key # appearance order). # # @param enum [Enumerable] # @return [Array<[Object, Array]>] An array of pairs. TODO: update @param and @return once I know what those are. The following is the modified version of the ruby code that was more portable to C++. You should be able to drop it into ruby 3.2.19 and get the same results from ruby sass. def group_by_to_a(enum, &block) order = {} arr = [] grouped = {} for e in enum do key = block[e] unless order.include?(key) order[key] = order.size end if not grouped.has_key?(key) then grouped[key] = [e] else grouped[key].push(e) end end grouped.each do |key, vals| arr[order[key]] = [key, vals] end arr end */ template void group_by_to_a(std::vector& enumeration, KeyFunctorType& keyFunc, std::vector > >& arr /*out*/) { std::map order; std::map > grouped; for (typename std::vector::iterator enumIter = enumeration.begin(), enumIterEnd = enumeration.end(); enumIter != enumIterEnd; enumIter++) { EnumType& e = *enumIter; KeyType key = keyFunc(e); if (grouped.find(key.hash()) == grouped.end()) { order.insert(std::make_pair((unsigned int)order.size(), key)); std::vector newCollection; newCollection.push_back(e); grouped.insert(std::make_pair(key.hash(), newCollection)); } else { std::vector& collection = grouped.at(key.hash()); collection.push_back(e); } } for (unsigned int index = 0; index < order.size(); index++) { KeyType& key = order.at(index); std::vector& values = grouped.at(key.hash()); std::pair > grouping = std::make_pair(key, values); arr.push_back(grouping); } } } #endif