/** * The MurmurHash3 algorithm was created by Austin Appleby and placed in the public domain. * This java port was authored by Yonik Seeley and also placed into the public domain. * The author hereby disclaims copyright to this source code. * <p> * This produces exactly the same hash values as the final C++ * version of MurmurHash3 and is thus suitable for producing the same hash values across * platforms. * <p> * The 32 bit x86 version of this hash should be the fastest variant for relatively short keys like ids. * murmurhash3_x64_128 is a good choice for longer strings or if you need more than 32 bits of hash. * <p> * Note - The x86 and x64 versions do _not_ produce the same results, as the * algorithms are optimized for their respective platforms. * <p> * See http://github.com/yonik/java_util for future updates to this file. */ public final class MurmurHash3 { /** * 128 bits of state */ public static final class LongPair { public long val1; public long val2; } public static final int fmix32(int h) { h ^= h >>> 16; h *= 0x85ebca6b; h ^= h >>> 13; h *= 0xc2b2ae35; h ^= h >>> 16; return h; } public static final long fmix64(long k) { k ^= k >>> 33; k *= 0xff51afd7ed558ccdL; k ^= k >>> 33; k *= 0xc4ceb9fe1a85ec53L; k ^= k >>> 33; return k; } /** * Gets a long from a byte buffer in little endian byte order. */ public static final long getLongLittleEndian(byte[] buf, int offset) { return ((long) buf[offset + 7] << 56) // no mask needed | ((buf[offset + 6] & 0xffL) << 48) | ((buf[offset + 5] & 0xffL) << 40) | ((buf[offset + 4] & 0xffL) << 32) | ((buf[offset + 3] & 0xffL) << 24) | ((buf[offset + 2] & 0xffL) << 16) | ((buf[offset + 1] & 0xffL) << 8) | ((buf[offset] & 0xffL)); // no shift needed } /** * Returns the MurmurHash3_x86_32 hash of the UTF-8 bytes of the String without actually encoding * the string to a temporary buffer. This is more than 2x faster than hashing the result * of String.getBytes(). */ public static long murmurhash3_x86_32(CharSequence data, int seed) { final int c1 = 0xcc9e2d51; final int c2 = 0x1b873593; int h1 = seed; int offset = 0; int len = data.length(); int pos = offset; int end = offset + len; int k1 = 0; int k2 = 0; int shift = 0; int bits = 0; int nBytes = 0; // length in UTF8 bytes while (pos < end) { int code = data.charAt(pos++); if (code < 0x80) { k2 = code; bits = 8; } else if (code < 0x800) { k2 = (0xC0 | (code >> 6)) | ((0x80 | (code & 0x3F)) << 8); bits = 16; } else if (code < 0xD800 || code > 0xDFFF || pos >= end) { // we check for pos>=end to encode an unpaired surrogate as 3 bytes. k2 = (0xE0 | (code >> 12)) | ((0x80 | ((code >> 6) & 0x3F)) << 8) | ((0x80 | (code & 0x3F)) << 16); bits = 24; } else { // surrogate pair // int utf32 = pos < end ? (int) data.charAt(pos++) : 0; int utf32 = (int) data.charAt(pos++); utf32 = ((code - 0xD7C0) << 10) + (utf32 & 0x3FF); k2 = (0xff & (0xF0 | (utf32 >> 18))) | ((0x80 | ((utf32 >> 12) & 0x3F))) << 8 | ((0x80 | ((utf32 >> 6) & 0x3F))) << 16 | (0x80 | (utf32 & 0x3F)) << 24; bits = 32; } k1 |= k2 << shift; // int used_bits = 32 - shift; // how many bits of k2 were used in k1. // int unused_bits = bits - used_bits; // (bits-(32-shift)) == bits+shift-32 == bits-newshift shift += bits; if (shift >= 32) { // mix after we have a complete word k1 *= c1; k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15); k1 *= c2; h1 ^= k1; h1 = (h1 << 13) | (h1 >>> 19); // ROTL32(h1,13); h1 = h1 * 5 + 0xe6546b64; shift -= 32; // unfortunately, java won't let you shift 32 bits off, so we need to check for 0 if (shift != 0) { k1 = k2 >>> (bits - shift); // bits used == bits - newshift } else { k1 = 0; } nBytes += 4; } } // inner // handle tail if (shift > 0) { nBytes += shift >> 3; k1 *= c1; k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15); k1 *= c2; h1 ^= k1; } // finalization h1 ^= nBytes; // fmix(h1); h1 ^= h1 >>> 16; h1 *= 0x85ebca6b; h1 ^= h1 >>> 13; h1 *= 0xc2b2ae35; h1 ^= h1 >>> 16; return h1 & 0xFFFFFFFFL; } }