(function (global, factory) { if (typeof define === "function" && define.amd) { define(["exports", "three", "../geometries/ConvexGeometry.js"], factory); } else if (typeof exports !== "undefined") { factory(exports, require("three"), require("../geometries/ConvexGeometry.js")); } else { var mod = { exports: {} }; factory(mod.exports, global.three, global.ConvexGeometry); global.ConvexObjectBreaker = mod.exports; } })(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports, _three, _ConvexGeometry) { "use strict"; Object.defineProperty(_exports, "__esModule", { value: true }); _exports.ConvexObjectBreaker = void 0; function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } /** * @fileoverview This class can be used to subdivide a convex Geometry object into pieces. * * Usage: * * Use the function prepareBreakableObject to prepare a Mesh object to be broken. * * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) * * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. * * Requisites for the object: * * - Mesh object must have a BufferGeometry (not Geometry) and a Material * * - Vertex normals must be planar (not smoothed) * * - The geometry must be convex (this is not checked in the library). You can create convex * geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives * can also be used. * * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function) * Use with caution and read the code when using with other libs. * * @param {double} minSizeForBreak Min size a debris can have to break. * @param {double} smallDelta Max distance to consider that a point belongs to a plane. * */ var _v1 = new _three.Vector3(); var ConvexObjectBreaker = /*#__PURE__*/function () { function ConvexObjectBreaker() { var minSizeForBreak = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : 1.4; var smallDelta = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0.0001; _classCallCheck(this, ConvexObjectBreaker); this.minSizeForBreak = minSizeForBreak; this.smallDelta = smallDelta; this.tempLine1 = new _three.Line3(); this.tempPlane1 = new _three.Plane(); this.tempPlane2 = new _three.Plane(); this.tempPlane_Cut = new _three.Plane(); this.tempCM1 = new _three.Vector3(); this.tempCM2 = new _three.Vector3(); this.tempVector3 = new _three.Vector3(); this.tempVector3_2 = new _three.Vector3(); this.tempVector3_3 = new _three.Vector3(); this.tempVector3_P0 = new _three.Vector3(); this.tempVector3_P1 = new _three.Vector3(); this.tempVector3_P2 = new _three.Vector3(); this.tempVector3_N0 = new _three.Vector3(); this.tempVector3_N1 = new _three.Vector3(); this.tempVector3_AB = new _three.Vector3(); this.tempVector3_CB = new _three.Vector3(); this.tempResultObjects = { object1: null, object2: null }; this.segments = []; var n = 30 * 30; for (var i = 0; i < n; i++) { this.segments[i] = false; } } _createClass(ConvexObjectBreaker, [{ key: "prepareBreakableObject", value: function prepareBreakableObject(object, mass, velocity, angularVelocity, breakable) { // object is a Object3d (normally a Mesh), must have a BufferGeometry, and it must be convex. // Its material property is propagated to its children (sub-pieces) // mass must be > 0 if (!object.geometry.isBufferGeometry) { console.error('THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.'); } var userData = object.userData; userData.mass = mass; userData.velocity = velocity.clone(); userData.angularVelocity = angularVelocity.clone(); userData.breakable = breakable; } /* * @param {int} maxRadialIterations Iterations for radial cuts. * @param {int} maxRandomIterations Max random iterations for not-radial cuts * * Returns the array of pieces */ }, { key: "subdivideByImpact", value: function subdivideByImpact(object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations) { var debris = []; var tempPlane1 = this.tempPlane1; var tempPlane2 = this.tempPlane2; this.tempVector3.addVectors(pointOfImpact, normal); tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3); var maxTotalIterations = maxRandomIterations + maxRadialIterations; var scope = this; function subdivideRadial(subObject, startAngle, endAngle, numIterations) { if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) { debris.push(subObject); return; } var angle = Math.PI; if (numIterations === 0) { tempPlane2.normal.copy(tempPlane1.normal); tempPlane2.constant = tempPlane1.constant; } else { if (numIterations <= maxRadialIterations) { angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact); tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2); } else { angle = (0.5 * (numIterations & 1) + 0.2 * (2 - Math.random())) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position); scope.tempVector3_3.copy(normal).add(subObject.position); tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2); } } // Perform the cut scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects); var obj1 = scope.tempResultObjects.object1; var obj2 = scope.tempResultObjects.object2; if (obj1) { subdivideRadial(obj1, startAngle, angle, numIterations + 1); } if (obj2) { subdivideRadial(obj2, angle, endAngle, numIterations + 1); } } subdivideRadial(object, 0, 2 * Math.PI, 0); return debris; } }, { key: "cutByPlane", value: function cutByPlane(object, plane, output) { // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. // object2 can be null if the plane doesn't cut the object. // object1 can be null only in case of internal error // Returned value is number of pieces, 0 for error. var geometry = object.geometry; var coords = geometry.attributes.position.array; var normals = geometry.attributes.normal.array; var numPoints = coords.length / 3; var numFaces = numPoints / 3; var indices = geometry.getIndex(); if (indices) { indices = indices.array; numFaces = indices.length / 3; } function getVertexIndex(faceIdx, vert) { // vert = 0, 1 or 2. var idx = faceIdx * 3 + vert; return indices ? indices[idx] : idx; } var points1 = []; var points2 = []; var delta = this.smallDelta; // Reset segments mark var numPointPairs = numPoints * numPoints; for (var i = 0; i < numPointPairs; i++) { this.segments[i] = false; } var p0 = this.tempVector3_P0; var p1 = this.tempVector3_P1; var n0 = this.tempVector3_N0; var n1 = this.tempVector3_N1; // Iterate through the faces to mark edges shared by coplanar faces for (var _i = 0; _i < numFaces - 1; _i++) { var a1 = getVertexIndex(_i, 0); var b1 = getVertexIndex(_i, 1); var c1 = getVertexIndex(_i, 2); // Assuming all 3 vertices have the same normal n0.set(normals[a1], normals[a1] + 1, normals[a1] + 2); for (var j = _i + 1; j < numFaces; j++) { var a2 = getVertexIndex(j, 0); var b2 = getVertexIndex(j, 1); var c2 = getVertexIndex(j, 2); // Assuming all 3 vertices have the same normal n1.set(normals[a2], normals[a2] + 1, normals[a2] + 2); var coplanar = 1 - n0.dot(n1) < delta; if (coplanar) { if (a1 === a2 || a1 === b2 || a1 === c2) { if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[a1 * numPoints + b1] = true; this.segments[b1 * numPoints + a1] = true; } else { this.segments[c1 * numPoints + a1] = true; this.segments[a1 * numPoints + c1] = true; } } else if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[c1 * numPoints + b1] = true; this.segments[b1 * numPoints + c1] = true; } } } } // Transform the plane to object local space var localPlane = this.tempPlane_Cut; object.updateMatrix(); ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane); // Iterate through the faces adding points to both pieces for (var _i2 = 0; _i2 < numFaces; _i2++) { var va = getVertexIndex(_i2, 0); var vb = getVertexIndex(_i2, 1); var vc = getVertexIndex(_i2, 2); for (var segment = 0; segment < 3; segment++) { var i0 = segment === 0 ? va : segment === 1 ? vb : vc; var i1 = segment === 0 ? vb : segment === 1 ? vc : va; var segmentState = this.segments[i0 * numPoints + i1]; if (segmentState) continue; // The segment already has been processed in another face // Mark segment as processed (also inverted segment) this.segments[i0 * numPoints + i1] = true; this.segments[i1 * numPoints + i0] = true; p0.set(coords[3 * i0], coords[3 * i0 + 1], coords[3 * i0 + 2]); p1.set(coords[3 * i1], coords[3 * i1 + 1], coords[3 * i1 + 2]); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point var mark0 = 0; var d = localPlane.distanceToPoint(p0); if (d > delta) { mark0 = 2; points2.push(p0.clone()); } else if (d < -delta) { mark0 = 1; points1.push(p0.clone()); } else { mark0 = 3; points1.push(p0.clone()); points2.push(p0.clone()); } // mark: 1 for negative side, 2 for positive side, 3 for coplanar point var mark1 = 0; d = localPlane.distanceToPoint(p1); if (d > delta) { mark1 = 2; points2.push(p1.clone()); } else if (d < -delta) { mark1 = 1; points1.push(p1.clone()); } else { mark1 = 3; points1.push(p1.clone()); points2.push(p1.clone()); } if (mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1) { // Intersection of segment with the plane this.tempLine1.start.copy(p0); this.tempLine1.end.copy(p1); var intersection = new _three.Vector3(); intersection = localPlane.intersectLine(this.tempLine1, intersection); if (intersection === null) { // Shouldn't happen console.error('Internal error: segment does not intersect plane.'); output.segmentedObject1 = null; output.segmentedObject2 = null; return 0; } points1.push(intersection); points2.push(intersection.clone()); } } } // Calculate debris mass (very fast and imprecise): var newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise) this.tempCM1.set(0, 0, 0); var radius1 = 0; var numPoints1 = points1.length; if (numPoints1 > 0) { for (var _i3 = 0; _i3 < numPoints1; _i3++) { this.tempCM1.add(points1[_i3]); } this.tempCM1.divideScalar(numPoints1); for (var _i4 = 0; _i4 < numPoints1; _i4++) { var p = points1[_i4]; p.sub(this.tempCM1); radius1 = Math.max(radius1, p.x, p.y, p.z); } this.tempCM1.add(object.position); } this.tempCM2.set(0, 0, 0); var radius2 = 0; var numPoints2 = points2.length; if (numPoints2 > 0) { for (var _i5 = 0; _i5 < numPoints2; _i5++) { this.tempCM2.add(points2[_i5]); } this.tempCM2.divideScalar(numPoints2); for (var _i6 = 0; _i6 < numPoints2; _i6++) { var _p = points2[_i6]; _p.sub(this.tempCM2); radius2 = Math.max(radius2, _p.x, _p.y, _p.z); } this.tempCM2.add(object.position); } var object1 = null; var object2 = null; var numObjects = 0; if (numPoints1 > 4) { object1 = new _three.Mesh(new _ConvexGeometry.ConvexGeometry(points1), object.material); object1.position.copy(this.tempCM1); object1.quaternion.copy(object.quaternion); this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak); numObjects++; } if (numPoints2 > 4) { object2 = new _three.Mesh(new _ConvexGeometry.ConvexGeometry(points2), object.material); object2.position.copy(this.tempCM2); object2.quaternion.copy(object.quaternion); this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak); numObjects++; } output.object1 = object1; output.object2 = object2; return numObjects; } }], [{ key: "transformFreeVector", value: function transformFreeVector(v, m) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[4] * y + e[8] * z; v.y = e[1] * x + e[5] * y + e[9] * z; v.z = e[2] * x + e[6] * y + e[10] * z; return v; } }, { key: "transformFreeVectorInverse", value: function transformFreeVectorInverse(v, m) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z; v.y = e[4] * x + e[5] * y + e[6] * z; v.z = e[8] * x + e[9] * y + e[10] * z; return v; } }, { key: "transformTiedVectorInverse", value: function transformTiedVectorInverse(v, m) { // input: // vector interpreted as a tied (ordinary) vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z - e[12]; v.y = e[4] * x + e[5] * y + e[6] * z - e[13]; v.z = e[8] * x + e[9] * y + e[10] * z - e[14]; return v; } }, { key: "transformPlaneToLocalSpace", value: function transformPlaneToLocalSpace(plane, m, resultPlane) { resultPlane.normal.copy(plane.normal); resultPlane.constant = plane.constant; var referencePoint = ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(_v1), m); ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m); // recalculate constant (like in setFromNormalAndCoplanarPoint) resultPlane.constant = -referencePoint.dot(resultPlane.normal); } }]); return ConvexObjectBreaker; }(); _exports.ConvexObjectBreaker = ConvexObjectBreaker; });