// This file is part of the "jQuery.Syntax" project, and is distributed under the MIT License. // Copyright (c) 2011 Samuel G. D. Williams. // See for licensing details. if (!RegExp.prototype.indexOf) { RegExp.indexOf = function (match, index) { return match[0].indexOf(match[index]) + match.index; }; } if (!RegExp.prototype.escape) { RegExp.escape = function (pattern) { return pattern.replace(/[\-\[\]{}()*+?.\\\^$|,#\s]/g, "\\$&"); }; } if (!String.prototype.repeat) { String.prototype.repeat = function(l) { return new Array(l+1).join(this); }; } // Return the inner text of an element - must preserve whitespace. // Avoid returning \r characters. Syntax.innerText = function(element) { var text; if (!element) { return ""; } if (element.nodeName == 'BR') { return '\n'; } else if (element.textContent) { // W3C: FF, Safari, Chrome, etc. text = element.textContent; } else if (document.body.innerText) { // IE, other older browsers. text = element.innerText; } return text.replace(/\r\n?/g, '\n'); } // Convert to stack based implementation Syntax.extractElementMatches = function (elems, offset) { var matches = [], current = [elems]; offset = offset || 0; (function (elems) { for (var i = 0; elems[i]; i++) { var text = null, elem = elems[i]; if (elem.nodeType === 3 || elem.nodeType === 4) { offset += elem.nodeValue.length; } else if (elem.nodeType === 1) { var text = Syntax.innerText(elem); matches.push(new Syntax.Match(offset, text.length, { klass: elem.className, force: true, element: elem, allow: '*' }, text)); } // Traverse everything, except comment nodes if (elem.nodeType !== 8 && elem.children) { arguments.callee(elem.childNodes, offset); } } })(elems); // Remove the top level element, since this will be recreated based on the supplied configuration. // Maybe there is a better way to achieve this? matches.shift(); return matches; } // A helper function which automatically matches expressions with capture groups from the regular expression match. // Each argument position corresponds to the same index regular expression group. // Or, override by providing rule.index Syntax.extractMatches = function() { var rules = arguments; return function(match, expr) { var matches = []; for (var i = 0; i < rules.length; i += 1) { var rule = rules[i], index = i+1; if (rule == null) { continue; } if (typeof(rule.index) != 'undefined') { index = rule.index; } if (rule.debug) { console.log("extractMatches", rule, index, match[index], match); } if (match[index].length > 0) { if (rule.brush) { matches.push(Syntax.Brush.buildTree(rule, match[index], RegExp.indexOf(match, index))); } else { var expression = jQuery.extend({owner: expr.owner}, rule); matches.push(new Syntax.Match(RegExp.indexOf(match, index), match[index].length, expression, match[index])); } } } return matches; }; }; // Used to create processing functions that automatically link to remote documentation. Syntax.lib.webLinkProcess = function (queryURI, lucky) { if (lucky) { queryURI = "http://www.google.com/search?btnI=I&q=" + encodeURIComponent(queryURI + " "); } return function (element, match, options) { // Per-code block linkification control. if (options.linkify === false) return element; var a = document.createElement('a'); a.href = queryURI + encodeURIComponent(Syntax.innerText(element)); a.className = element.className; // Move children from to while (element.childNodes.length > 0) a.appendChild(element.childNodes[0]); return a; }; }; // Global brush registration function. Syntax.register = function (name, callback) { var brush = Syntax.brushes[name] = new Syntax.Brush(); brush.klass = name; callback(brush); }; // Library of helper patterns Syntax.lib.cStyleComment = {pattern: /\/\*[\s\S]*?\*\//gm, klass: 'comment', allow: ['href']}; Syntax.lib.cppStyleComment = {pattern: /\/\/.*$/gm, klass: 'comment', allow: ['href']}; Syntax.lib.perlStyleComment = {pattern: /#.*$/gm, klass: 'comment', allow: ['href']}; // A hackity hack: Syntax.lib.perlStyleRegularExpression = {pattern: /\B\/([^\\\/]|\\.)*\/[a-z]*(?=\s*($|[^\w\s'"\(]))/gm, klass: 'constant', incremental: true}; Syntax.lib.rubyStyleRegularExpression = {pattern: /\B\/([^\\\/]|\\.)*\/[a-z]*(?=\s*($|[^\w\s'"\(]|do))/gm, klass: 'constant', incremental: true}; Syntax.lib.cStyleFunction = {pattern: /([a-z_][a-z0-9_]*)\s*\(/gi, matches: Syntax.extractMatches({klass: 'function'})}; Syntax.lib.camelCaseType = {pattern: /\b_*[A-Z][\w]*\b/g, klass: 'type'}; Syntax.lib.cStyleType = {pattern: /\b[_a-z][_\w]*_t\b/gi, klass: 'type'}; Syntax.lib.xmlComment = {pattern: /(<|<)!--[\s\S]*?--(>|>)/gm, klass: 'comment'}; Syntax.lib.webLink = {pattern: /\w+:\/\/[\w\-.\/?%&=@:;#]*/g, klass: 'href'}; Syntax.lib.hexNumber = {pattern: /\b0x[0-9a-fA-F]+/g, klass: 'constant'}; Syntax.lib.decimalNumber = {pattern: /\b[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?/g, klass: 'constant'}; Syntax.lib.doubleQuotedString = {pattern: /"([^\\"\n]|\\.)*"/g, klass: 'string'}; Syntax.lib.singleQuotedString = {pattern: /'([^\\'\n]|\\.)*'/g, klass: 'string'}; Syntax.lib.multiLineDoubleQuotedString = {pattern: /"([^\\"]|\\.)*"/g, klass: 'string'}; Syntax.lib.multiLineSingleQuotedString = {pattern: /'([^\\']|\\.)*'/g, klass: 'string'}; Syntax.lib.stringEscape = {pattern: /\\./g, klass: 'escape', only: ['string']}; // Main match constructor. Make sure value is the correct size. Syntax.Match = function (offset, length, expression, value) { this.offset = offset; this.endOffset = offset + length; this.length = length; this.expression = expression; this.value = value; this.children = []; this.parent = null; // When a node is bisected, this points to the next part. this.next = null; }; // Shifts an entire tree forward or backwards. Syntax.Match.prototype.shift = function (offset, text) { this.adjust(offset, null, text); for (var i = 0; i < this.children.length; i++) { this.children[i].shift(offset, text) } }; // C the current match to have different offset and length. Syntax.Match.prototype.adjust = function (offset, length, text) { this.offset += offset; this.endOffset += offset; if (length) { this.length = length; this.endOffset = this.offset + length; } if (text) { this.value = text.substr(this.offset, this.length); } }; // Sort helper for sorting matches in forward order (e.g. same as the text that they were extracted from) Syntax.Match.sort = function (a,b) { return (a.offset - b.offset) || (b.length - a.length); }; // Is the given match contained in the range of the parent match? Syntax.Match.prototype.contains = function (match) { return (match.offset >= this.offset) && (match.endOffset <= this.endOffset); }; // Reduce a givent tree node into an html node. Syntax.Match.defaultReduceCallback = function (node, container) { // We avoid using jQuery in this function since it is incredibly performance sensitive. // Using jQuery jQuery.fn.append() can reduce performance by as much as 1/3rd. if (typeof(node) === 'string') { node = document.createTextNode(node); } container.appendChild(node); }; // Convert a tree of matches into some flat form (typically HTML nodes). Syntax.Match.prototype.reduce = function (append, process) { var start = this.offset; var container = document.createElement('span'); append = append || Syntax.Match.defaultReduceCallback; if (this.expression && this.expression.klass) { if (container.className.length > 0) container.className += ' '; container.className += this.expression.klass; } if (this.className) { container.className += ' '; container.className += this.className; } for (var i = 0; i < this.children.length; i += 1) { var child = this.children[i], end = child.offset; if (child.offset < this.offset) { console.log("Syntax Warning: Offset of child", child, "is before offset of parent", this); } var text = this.value.substr(start - this.offset, end - start); append(text, container); append(child.reduce(append, process), container); start = child.endOffset; } if (start === this.offset) { append(this.value, container); } else if (start < this.endOffset) { append(this.value.substr(start - this.offset, this.endOffset - start), container); } else if (start > this.endOffset) { console.log("Syntax Warning: Start position " + start + " exceeds end of value " + this.endOffset); } if (process) { container = process(container, this); } return container; }; // Main nesting check - can a match contain the given match? Syntax.Match.prototype.canContain = function (match) { // This is a special conditional for explicitly added ranges by the user. // Since user added it, we honour it no matter what. if (match.expression.force) { return true; } // Can't add anything into complete trees. if (this.complete) { return false; } // match.expression.only will be checked on insertion using this.canHaveChild(match) if (match.expression.only) { return true; } // If allow is undefined, default behaviour is no children. if (typeof(this.expression.allow) === 'undefined') { return false; } // false if {disallow: [..., klass, ...]} if (jQuery.isArray(this.expression.disallow) && jQuery.inArray(match.expression.klass, this.expression.disallow) !== -1) { return false; } // true if {allow: '*'} if (this.expression.allow === '*') { return true; } // true if {allow: [..., klass, ...]} if (jQuery.isArray(this.expression.allow) && jQuery.inArray(match.expression.klass, this.expression.allow) !== -1) { return true; } return false; }; // Return true if the given match can be spliced in as a child. // Checked automatically when calling _splice. Syntax.Match.prototype.canHaveChild = function(match) { var only = match.expression.only; // This condition is fairly slow if (only) { var cur = this; while (cur !== null) { if (jQuery.inArray(cur.expression.klass, only) !== -1) { return true; } cur = cur.parent; // We don't traverse into other trees. if (cur && cur.complete) { break; } } return false; } return true; }; // Add a child into the list of children for a given match, if it is acceptable to do so. // Updates the owner of the match. // Returns null if splice failed. Syntax.Match.prototype._splice = function(i, match) { if (this.canHaveChild(match)) { this.children.splice(i, 0, match); match.parent = this; // For matches added using tags. if (!match.expression.owner) { match.expression.owner = this.expression.owner; } return this; } else { return null; } }; // This function implements a full insertion procedure, and will break up the match to fit. // This operation is potentially very expensive, but is used to insert custom ranges into // the tree, if they are specified by the user. A custom may cover multiple leafs in // the tree, thus some parts of the tree may need to be split. This behavior is controlled // by whole - if true, the tree is split, if false, the match is split. // You should avoid using this function except in very specific cases. Syntax.Match.prototype.insert = function(match, whole) { if (!this.contains(match)) return null; if (whole) { var top = this, i = 0; while (i < top.children.length) { if (top.children[i].contains(match)) { top = top.children[i]; i = 0; } else { i += 1; } } return top._insertWhole(match); } else { return this._insert(match); } } Syntax.Match.prototype._insertWhole = function(match) { var parts = this.bisectAtOffsets([match.offset, match.endOffset]) this.children = []; if (parts[0]) { this.children = this.children.concat(parts[0].children); } if (parts[1]) { match.children = []; // Update the match's expression based on the current position in the tree: if (this.expression && this.expression.owner) { match.expression = this.expression.owner.getRuleForKlass(match.expression.klass) || match.expression; } // This probably isn't ideal, it would be better to convert all children and children-of-children // into a linear array and reinsert - it would be slightly more accurate in many cases. for (var i = 0; i < parts[1].children.length; i += 1) { var child = parts[1].children[i]; if (match.canContain(child)) { match.children.push(child); } } this.children.push(match); } if (parts[2]) { this.children = this.children.concat(parts[2].children); } return this; } // This is not a general tree insertion function. It is optimised to run in almost constant // time, but data must be inserted in sorted order, otherwise you will have problems. // This function also ensures that matches won't be broken up unless absolutely necessary. Syntax.Match.prototype.insertAtEnd = function(match) { if (!this.contains(match)) { console.log("Syntax Error: Child is not contained in parent node!"); return null; } if (!this.canContain(match)) { return null; } if (this.children.length > 0) { var i = this.children.length-1; var child = this.children[i]; if (match.offset < child.offset) { // Displacement: Before or LHS Overlap // This means that the match has actually occurred before the last child. // This is a bit of an unusual situation because the matches SHOULD be in // sorted order. // However, we are sure that the match is contained in this node. This situation // sometimes occurs when sorting existing branches with matches that are supposed // to be within that branch. When we insert the match into the branch, there are // matches that technically should have been inserted afterwards. // Normal usage should avoid this case, and this is best for performance. if (match.force) { return this._insert(match); } else { return null; } } else if (match.offset < child.endOffset) { if (match.endOffset <= child.endOffset) { // Displacement: Contains //console.log("displacement => contains"); var result = child.insertAtEnd(match); return result; } else { // Displacement: RHS Overlap if (match.force) { return this._insert(match); } else { return null; } } } else { // Displacement: After return this._splice(i+1, match); } } else { // Displacement: Contains [but currently no children] return this._splice(0, match); } }; // This insertion function is relatively complex because it is required to split the match over // several children. This function is used infrequently and is mostly for completeness. However, // it might be possible to remove it to reduce code. Syntax.Match.prototype._insert = function(match) { if (this.children.length == 0) return this._splice(0, match); for (var i = 0; i < this.children.length; i += 1) { var child = this.children[i]; // If the match ends before this child, it must be before it. if (match.endOffset <= child.offset) return this._splice(i, match); // If the match starts after this child, we continue. if (match.offset >= child.endOffset) continue; // There are four possibilities... // ... with the possibility of overlapping children on the RHS. // {------child------} {---possibly some other child---} // |----------complete overlap---------| // |--lhs overlap--| // |--contains--| // |--rhs overlap--| // First, the easiest case: if (child.contains(match)) { return child._insert(match); } // console.log("Bisect at offsets", match, child.offset, child.endOffset); var parts = match.bisectAtOffsets([child.offset, child.endOffset]); // console.log("parts =", parts); // We now have at most three parts // {------child------} {---possibly some other child---} // |--[0]--|-------[1]-------|--[2]--| // console.log("parts", parts); if (parts[0]) { this._splice(i, parts[0]) } if (parts[1]) { child.insert(parts[1]) } // Continue insertion at this level with remainder. if (parts[2]) { match = parts[2] } else { return this; } } // If we got this far, the match wasn't [completely] inserted into the list of existing children, so it must be on the end. this._splice(this.children.length, match); } // This algorithm recursively bisects the tree at a given offset, but it does this efficiently by folding multiple bisections // at a time. // Splits: / / / // Tree: |-------------------------Top-------------------------| // |------------A--------------------| |------C-------| // |-------B----------| // Step (1): // Split Top into 4 parts: // |------/----------------/-------------------/---------| // For each part, check if there are any children that cover this part. // If there is a child, recursively call bisect with all splits. // Step (1-1): // Split A into parts: // |------/-----A----------/---------| // For each part, check if there are any children that cover this part. // If there is a child, recursively call bisect with all splits. // Step (1-1-1): // Split B into parts: // |-------B---/------| // No children covered by split. Return array of two parts, B1, B2. // Step (1-2): // Enumerate the results of splitting the child and merge piece-wise into own parts // |------/-----A----------/---------| // |------B1---|--B2--| // Finished merging children, return array of three parts, A1, A2, A3 // Step (2): // Enumerate the results of splitting the child and merge piece-wise into own parts. // |------/----------------/-------------------/---------| // |--A1--|-------A2-------|----A3---| // |------B1---|--B2--| // Continue by splitting next child, C. // Once all children have been split and merged, return all parts, T1, T2, T3, T4. // The new tree: // |--T1--|-------T2-------|--------T3---------|---T4---| // |--A1--|-------A2-------|----A3---| |--C1--|---C2--| // |------B1---|--B2--| // // The new structure is as follows: // T1 <- A1 // T2 <- A2 <- B1 // T3 <- A3 <- B2 // \- C1 // T4 <- C2 // Syntax.Match.prototype.bisectAtOffsets = function(splits) { var parts = [], start = this.offset, prev = null, children = jQuery.merge([], this.children); // Copy the array so we can modify it. splits = splits.slice(0); // We need to split including the last part. splits.push(this.endOffset); splits.sort(function (a,b) { return a-b; }); // We build a set of top level matches by looking at each split point and // creating a new match from the end of the previous match to the split point. for (var i = 0; i < splits.length; i += 1) { var offset = splits[i]; // The split offset is past the end of the match, so there are no more possible // splits. if (offset > this.endOffset) { break; } // We keep track of null parts if the offset is less than the start // so that things align up as expected with the requested splits. if ( offset < this.offset // If the split point is less than the start of the match. || (offset - start) == 0 // If the match would have effectively zero length. ) { parts.push(null); // Preserve alignment with splits. start = offset; continue; } // Even if the previous split was out to the left, we align up the start // to be at the start of the match we are bisecting. if (start < this.offset) start = this.offset; var match = new Syntax.Match(start, offset - start, this.expression); match.value = this.value.substr(start - this.offset, match.length); if (prev) { prev.next = match; } prev = match; start = match.endOffset; parts.push(match); } // We only need to split to produce the number of parts we have. splits.length = parts.length; for (var i = 0; i < parts.length; i += 1) { if (parts[i] == null) continue; var offset = splits[0]; while (children.length > 0) { if (children[0].endOffset <= parts[i].endOffset) { parts[i].children.push(children.shift()); } else { break; } } if (children.length) { // We may have an intersection if (children[0].offset < parts[i].endOffset) { var children_parts = children.shift().bisectAtOffsets(splits), j = 0; // children_parts are the bisected children which need to be merged with parts // in a linear fashion for (; j < children_parts.length; j += 1) { if (children_parts[j] == null) continue; // Preserve alignment with splits. parts[i+j].children.push(children_parts[j]); } // Skip any parts which have been populated already // (i is incremented at the start of the loop, splits shifted at the end) i += (children_parts.length-2); splits.splice(0, children_parts.length-2); } } splits.shift(); } if (children.length) { console.log("Syntax Error: Children nodes not consumed", children.length, " remaining!"); } return parts; }; // Split a match at points in the tree that match a specific regular expression pattern. // Uses the fast tree bisection algorithm, performance should be bounded O(S log N) where N is // the total number of matches and S is the number of splits (?). Syntax.Match.prototype.split = function(pattern) { var splits = [], match; while ((match = pattern.exec(this.value)) !== null) { splits.push(pattern.lastIndex); } var matches = this.bisectAtOffsets(splits); // Remove any null placeholders. return jQuery.grep(matches, function(n,i){ return n; }); }; Syntax.Match.prototype.splitLines = function() { var lines = this.split(/\n/g); for (var i = 0; i < lines.length; i += 1) { var line = lines[i]; var indentOffset = line.value.search(/\S/); var top = new Syntax.Match(line.offset, line.length, line.expression, line.value); if (indentOffset > 0) { var parts = line.bisectAtOffsets([line.offset + indentOffset]); top.children = parts; parts[0].expression = {klass: 'indent'}; parts[1].expression = {klass: 'text'}; } else { line.expression = {klass: 'text'}; top.children = [line]; } lines[i] = top; } return lines; } Syntax.Brush = function () { // The primary class of this brush. Must be unique. this.klass = null; // A sequential list of rules for extracting matches. this.rules = []; // A list of all parents that this brush derives from. this.parents = []; // A list of processes that may be run after extracting matches. this.processes = {}; }; // Add a parent to the brush. This brush should be loaded as a dependency. Syntax.Brush.prototype.derives = function (name) { this.parents.push(name); this.rules.push({ apply: function(text, expr) { return Syntax.brushes[name].getMatches(text); } }); }; // Return an array of all classes that the brush consists of. // A derivied brush is its own klass + the klass of any and all parents. Syntax.Brush.prototype.allKlasses = function () { var klasses = [this.klass]; for (var i = 0; i < this.parents.length; i += 1) { klasses = klasses.concat(Syntax.brushes[this.parents[i]].allKlasses()); } return klasses; } Syntax.Brush.convertStringToTokenPattern = function (pattern, escape) { var prefix = "\\b", postfix = "\\b"; if (!pattern.match(/^\w/)) { if (!pattern.match(/\w$/)) { prefix = postfix = ""; } else { prefix = "\\B"; } } else { if (!pattern.match(/\w$/)) { postfix = "\\B"; } } if (escape) pattern = RegExp.escape(pattern) return prefix + pattern + postfix; } Syntax.Brush.MatchPattern = function (text, rule) { if (!rule.pattern) return []; // Duplicate the pattern so that the function is reentrant. var matches = [], pattern = new RegExp; pattern.compile(rule.pattern); while((match = pattern.exec(text)) !== null) { if (rule.matches) { matches = matches.concat(rule.matches(match, rule)); } else if (rule.brush) { matches.push(Syntax.Brush.buildTree(rule, match[0], match.index)); } else { matches.push(new Syntax.Match(match.index, match[0].length, rule, match[0])); } if (rule.incremental) { // Don't start scanning from the end of the match.. pattern.lastIndex = match.index + 1; } } return matches; } Syntax.Brush.prototype.push = function () { if (jQuery.isArray(arguments[0])) { var patterns = arguments[0], rule = arguments[1]; var all = "("; for (var i = 0; i < patterns.length; i += 1) { if (i > 0) all += "|"; var p = patterns[i]; if (p instanceof RegExp) { all += p.source; } else { all += Syntax.Brush.convertStringToTokenPattern(p, true); } } all += ")"; this.push(jQuery.extend({ pattern: new RegExp(all, rule.options || 'g') }, rule)); } else { var rule = arguments[0]; if (typeof(rule.pattern) === 'string') { rule.string = rule.pattern; rule.pattern = new RegExp(Syntax.Brush.convertStringToTokenPattern(rule.string, true), rule.options || 'g') } if (typeof(XRegExp) !== 'undefined') { rule.pattern = new XRegExp(rule.pattern); } // Default pattern extraction algorithm rule.apply = rule.apply || Syntax.Brush.MatchPattern; if (rule.pattern && rule.pattern.global || typeof(rule.pattern) == 'undefined') { this.rules.push(jQuery.extend({owner: this}, rule)); } else { console.log("Syntax Error: Malformed rule: ", rule); } } }; Syntax.Brush.prototype.getMatchesForRule = function (text, rule) { var matches = [], match = null; // Short circuit (user defined) function: if (typeof(rule.apply) != 'undefined') { matches = rule.apply(text, rule); } if (rule.debug) { console.log("Syntax matches:", rule, text, matches); } return matches; }; Syntax.Brush.prototype.getRuleForKlass = function (klass) { for (var i = 0; i < this.rules.length; i += 1) { if (this.rules[i].klass == klass) { return this.rules[i]; } } return null; } // Get all matches from a given block of text. Syntax.Brush.prototype.getMatches = function(text) { var matches = []; for (var i = 0; i < this.rules.length; i += 1) { matches = matches.concat(this.getMatchesForRule(text, this.rules[i])); } return matches; }; // A helper function for building a tree from a specific rule. // Typically used where sub-trees are required, e.g. CSS brush in HTML brush. Syntax.Brush.buildTree = function(rule, text, offset, additionalMatches) { var match = Syntax.brushes[rule.brush].buildTree(text, offset, additionalMatches); jQuery.extend(match.expression, rule); return match; } // This function builds a tree from a given block of text. // This is done by applying all rules to the text to get a complete list of matches, // sorting them in order, and inserting them into a syntax tree data structure. // Additional matches are forcefully inserted into the tree. // Provide an offset if the text is offset in a larger block of text. Matches // will be shifted along appropriately. Syntax.Brush.prototype.buildTree = function(text, offset, additionalMatches) { offset = offset || 0; // Fixes code that uses \r\n for line endings. /$/ matches both \r\n, which is a problem.. text = text.replace(/\r/g, ''); var matches = this.getMatches(text); // Shift matches if offset is provided. if (offset && offset > 0) { for (var i = 0; i < matches.length; i += 1) { matches[i].shift(offset); } } var top = new Syntax.Match(offset, text.length, {klass: this.allKlasses().join(" "), allow: '*', owner: this}, text); // This sort is absolutely key to the functioning of the tree insertion algorithm. matches.sort(Syntax.Match.sort); for (var i = 0; i < matches.length; i += 1) { top.insertAtEnd(matches[i]); } if (additionalMatches) { for (var i = 0; i < additionalMatches.length; i += 1) { top.insert(additionalMatches[i], true); } } top.complete = true; return top; }; // This function builds a syntax tree from the given text and matches (optional). // The syntax tree is then flattened into html using a variety of functions. // // By default, you can't control reduction process through this function, but // it is possible to control the element conversion process by replace // .reduce(null, ...) with .reduce(reduceCallback, ...) // See Syntax.Match.defaultReduceCallback for more details about interface. // // Matches is optional, and provides a set of pre-existing matches to add // to the tree. // Options are passed to element level processing functions. Syntax.Brush.prototype.process = function(text, matches, options) { var top = this.buildTree(text, 0, matches); var lines = top.splitLines(); var html = document.createElement('code'); html.className = 'syntax highlighted'; for (var i = 0; i < lines.length; i += 1) { var line = lines[i].reduce(null, function (container, match) { if (match.expression) { if (match.expression.process) { container = match.expression.process(container, match, options); } if (match.expression.owner) { var process = match.expression.owner.processes[match.expression.klass]; if (process) { container = process(container, match, options); } } } return container; }); html.appendChild(line); } return html; }; // Highlights a given block of text with a given set of options. // options.brush should specify the brush to use, either by direct reference // or name. // Callback will be called with (highlighted_html, brush_used, original_text, options) Syntax.highlightText = function(text, brush, matches, options, callback) { brush = (brush || 'plain').toLowerCase(); brush = Syntax.aliases[brush] || brush; Syntax.brushes.get(brush, function(brush) { var html = brush.process(text, matches, options); if (options.linkify) { jQuery('span.href', html).each(function(){ jQuery(this).replaceWith(jQuery('').attr('href', this.innerHTML).text(this.innerHTML)); }); } callback(html, brush, text, options); }); } Syntax.extractBrushName = function (className) { // brush names are by default lower case - normalize so we can detect it. className = className.toLowerCase(); var match = className.match(/(brush|language)-([\S]+)/); if (match) { return match[2]; } else { var classes = className.split(/ /); if (jQuery.inArray("syntax", classes) !== -1) { for (var i = 0; i < classes.length; i += 1) { var name = Syntax.aliases[classes[i]]; if (name) { return name; } } } } return null; } Syntax.extractTextBrushName = function (text) { var match = text.match(/-\*- mode: (.+?);(.*?)-\*-/i); var endOfSecondLine = text.indexOf("\n", text.indexOf("\n") + 1); if (match && match.index < endOfSecondLine) { return brush; } } // Highlight a given set of elements with a set of options. // Callback will be called once per element with (options, highlighted_html, original_container) Syntax.highlight = function (elements, options, callback) { elements.each(function () { var container = jQuery(this); var brush = options.brush || Syntax.extractBrushName(this.className); var text = Syntax.innerText(this); // We can augment the plain text to extract existing annotations (e.g. ...). var matches = Syntax.extractElementMatches(container); if (options.matches) { Array.prototype.push(matches, options.matches); } Syntax.highlightText(text, brush, matches, options, function(html, brush/*, text, options*/) { html = jQuery(html); // If there is a theme specified, ensure it is added to the top level class. if (options.theme) { // Load dependencies var themes = Syntax.themes[options.theme]; for (var i = 0; i < themes.length; i += 1) { html.addClass("syntax-theme-" + themes[i]); } // Add the base theme html.addClass("syntax-theme-" + options.theme); } if (brush.postprocess) { html = brush.postprocess(options, html, container); } if (callback) { html = callback(options, html, container); } if (html && options.replace === true) { container.replaceWith(html); } }); }); }; // Register the file as being loaded Syntax.loader.core = true;