Sha256: 6d2c02eab516e49686cc28154b3cbbd190fa681e5a2cab69d83bf872c16da9fe
Contents?: true
Size: 1.62 KB
Versions: 1
Compression:
Stored size: 1.62 KB
Contents
# -*- encoding: utf-8 -*- $:.push File.expand_path("../lib", __FILE__) require "cabalist/version" Gem::Specification.new do |s| s.name = "cabalist" s.version = Cabalist::VERSION s.authors = ["Marcin Wyszynski"] s.email = ["marcin.pixie@gmail.com"] s.homepage = "http://github.com/marcinwyszynski/cabalist" s.licenses = ['MIT'] s.summary = %q{Minimum setup machine learning (classification) library for Ruby on Rails applications.} s.description = <<-EOF Cabalist is conceived as a simple way of adding some smarts (machine learning capabilities) to your Ruby on Rails models without having to dig deep into mind-boggling AI algorithms. Using it is meant to be as straightforward as adding a few lines to your existing code and running a Rails generator or two. EOF s.rubyforge_project = "cabalist" s.required_ruby_version = '>= 1.9.2' s.files = `git ls-files`.split("\n") s.test_files = `git ls-files -- {test,spec,features}/*`.split("\n") s.executables = `git ls-files -- bin/*`.split("\n").map{ |f| File.basename(f) } s.require_paths = ["lib"] # Gem dependencies s.add_dependency('ai4r') s.add_dependency('haml', '>= 3.0') s.add_dependency('googlecharts', '>= 1.6.8') s.add_dependency('kaminari', '>= 0.13.0') s.add_dependency('leveldb-ruby') s.add_dependency('padrino-helpers') s.add_dependency('rake') s.add_dependency('sinatra') # Gem development dependencies s.add_development_dependency('activerecord') s.add_development_dependency('rspec') s.add_development_dependency('sqlite3') s.add_development_dependency('with_model') end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
cabalist-0.0.4 | cabalist.gemspec |