Sha256: 6c90714a9936e097e7972a8003d9147850687e2c9af9661ea51abaab53235d38
Contents?: true
Size: 709 Bytes
Versions: 54
Compression:
Stored size: 709 Bytes
Contents
module Torch module NN class Conv3d < ConvNd def initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros") kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) super(in_channels, out_channels, kernel_size, stride, padding, dilation, false, _triple(0), groups, bias, padding_mode) end def forward(input) if @padding_mode == "circular" raise NotImplementedError end F.conv3d(input, @weight, @bias, @stride, @padding, @dilation, @groups) end end end end
Version data entries
54 entries across 54 versions & 1 rubygems