//! Implementation of a standard S390x ABI. //! //! This machine uses the "vanilla" ABI implementation from abi.rs, //! however a few details are different from the description there: //! //! - On s390x, the caller must provide a "register save area" of 160 //! bytes to any function it calls. The called function is free to use //! this space for any purpose; usually to save callee-saved GPRs. //! (Note that while this area is allocated by the caller, it is counted //! as part of the callee's stack frame; in particular, the callee's CFA //! is the top of the register save area, not the incoming SP value.) //! //! - Overflow arguments are passed on the stack starting immediately //! above the register save area. On s390x, this space is allocated //! only once directly in the prologue, using a size large enough to //! hold overflow arguments for every call in the function. //! //! - On s390x we do not use a frame pointer register; instead, every //! element of the stack frame is addressed via (constant) offsets //! from the stack pointer. Note that due to the above (and because //! there are no variable-sized stack allocations in cranelift), the //! value of the stack pointer register never changes after the //! initial allocation in the function prologue. //! //! - If we are asked to "preserve frame pointers" to enable stack //! unwinding, we use the stack backchain feature instead, which //! is documented by the s390x ELF ABI, but marked as optional. //! This ensures that at all times during execution of a function, //! the lowest word on the stack (part of the register save area) //! holds a copy of the stack pointer at function entry. //! //! Overall, the stack frame layout on s390x is as follows: //! //! ```plain //! (high address) //! //! +---------------------------+ //! | ... | //! CFA -----> | stack args | //! +---------------------------+ //! | ... | //! | 160 bytes reg save area | //! | (used to save GPRs) | //! SP at function entry -----> | (incl. caller's backchain)| //! +---------------------------+ //! | ... | //! | clobbered callee-saves | //! | (used to save FPRs) | //! unwind-frame base ----> | (alloc'd by prologue) | //! +---------------------------+ //! | ... | //! | spill slots | //! | (accessed via nominal SP) | //! | ... | //! | stack slots | //! | (accessed via nominal SP) | //! nominal SP ---------------> | (alloc'd by prologue) | //! +---------------------------+ //! | ... | //! | args for call | //! | outgoing reg save area | //! | (alloc'd by prologue) | //! SP during function ------> | (incl. callee's backchain)| //! +---------------------------+ //! //! (low address) //! ``` use crate::ir; use crate::ir::condcodes::IntCC; use crate::ir::types; use crate::ir::MemFlags; use crate::ir::Signature; use crate::ir::Type; use crate::isa; use crate::isa::s390x::{inst::*, settings as s390x_settings}; use crate::isa::unwind::UnwindInst; use crate::machinst::*; use crate::machinst::{RealReg, Reg, RegClass, Writable}; use crate::settings; use crate::{CodegenError, CodegenResult}; use alloc::vec::Vec; use regalloc2::{MachineEnv, PReg, PRegSet}; use smallvec::{smallvec, SmallVec}; use std::convert::TryFrom; use std::sync::OnceLock; // We use a generic implementation that factors out ABI commonalities. /// Support for the S390x ABI from the callee side (within a function body). pub type S390xCallee = Callee; /// ABI Register usage fn in_int_reg(ty: Type) -> bool { match ty { types::I8 | types::I16 | types::I32 | types::I64 | types::R64 => true, _ => false, } } fn in_flt_reg(ty: Type) -> bool { match ty { types::F32 | types::F64 => true, _ => false, } } fn in_vec_reg(ty: Type) -> bool { ty.is_vector() && ty.bits() == 128 } fn get_intreg_for_arg(idx: usize) -> Option { match idx { 0 => Some(regs::gpr(2)), 1 => Some(regs::gpr(3)), 2 => Some(regs::gpr(4)), 3 => Some(regs::gpr(5)), 4 => Some(regs::gpr(6)), _ => None, } } fn get_fltreg_for_arg(idx: usize) -> Option { match idx { 0 => Some(regs::vr(0)), 1 => Some(regs::vr(2)), 2 => Some(regs::vr(4)), 3 => Some(regs::vr(6)), _ => None, } } fn get_vecreg_for_arg(idx: usize) -> Option { match idx { 0 => Some(regs::vr(24)), 1 => Some(regs::vr(25)), 2 => Some(regs::vr(26)), 3 => Some(regs::vr(27)), 4 => Some(regs::vr(28)), 5 => Some(regs::vr(29)), 6 => Some(regs::vr(30)), 7 => Some(regs::vr(31)), _ => None, } } fn get_intreg_for_ret(idx: usize) -> Option { match idx { 0 => Some(regs::gpr(2)), // ABI extension to support multi-value returns: 1 => Some(regs::gpr(3)), 2 => Some(regs::gpr(4)), 3 => Some(regs::gpr(5)), _ => None, } } fn get_fltreg_for_ret(idx: usize) -> Option { match idx { 0 => Some(regs::vr(0)), // ABI extension to support multi-value returns: 1 => Some(regs::vr(2)), 2 => Some(regs::vr(4)), 3 => Some(regs::vr(6)), _ => None, } } fn get_vecreg_for_ret(idx: usize) -> Option { match idx { 0 => Some(regs::vr(24)), // ABI extension to support multi-value returns: 1 => Some(regs::vr(25)), 2 => Some(regs::vr(26)), 3 => Some(regs::vr(27)), 4 => Some(regs::vr(28)), 5 => Some(regs::vr(29)), 6 => Some(regs::vr(30)), 7 => Some(regs::vr(31)), _ => None, } } /// This is the limit for the size of argument and return-value areas on the /// stack. We place a reasonable limit here to avoid integer overflow issues /// with 32-bit arithmetic: for now, 128 MB. static STACK_ARG_RET_SIZE_LIMIT: u32 = 128 * 1024 * 1024; /// The size of the register save area pub static REG_SAVE_AREA_SIZE: u32 = 160; impl Into for StackAMode { fn into(self) -> MemArg { match self { StackAMode::FPOffset(off, _ty) => MemArg::InitialSPOffset { off }, StackAMode::NominalSPOffset(off, _ty) => MemArg::NominalSPOffset { off }, StackAMode::SPOffset(off, _ty) => { MemArg::reg_plus_off(stack_reg(), off, MemFlags::trusted()) } } } } /// S390x-specific ABI behavior. This struct just serves as an implementation /// point for the trait; it is never actually instantiated. pub struct S390xMachineDeps; impl IsaFlags for s390x_settings::Flags {} impl ABIMachineSpec for S390xMachineDeps { type I = Inst; type F = s390x_settings::Flags; fn word_bits() -> u32 { 64 } /// Return required stack alignment in bytes. fn stack_align(_call_conv: isa::CallConv) -> u32 { 8 } fn compute_arg_locs<'a, I>( call_conv: isa::CallConv, _flags: &settings::Flags, params: I, args_or_rets: ArgsOrRets, add_ret_area_ptr: bool, mut args: ArgsAccumulator<'_>, ) -> CodegenResult<(u32, Option)> where I: IntoIterator, { assert_ne!( call_conv, isa::CallConv::Tail, "s390x does not support the 'tail' calling convention yet" ); let mut next_gpr = 0; let mut next_fpr = 0; let mut next_vr = 0; let mut next_stack: u32 = 0; if args_or_rets == ArgsOrRets::Args { next_stack = REG_SAVE_AREA_SIZE; } // In the SystemV ABI, the return area pointer is the first argument, // so we need to leave room for it if required. if add_ret_area_ptr { next_gpr += 1; } for mut param in params.into_iter().copied() { let intreg = in_int_reg(param.value_type); let fltreg = in_flt_reg(param.value_type); let vecreg = in_vec_reg(param.value_type); debug_assert!(intreg as i32 + fltreg as i32 + vecreg as i32 <= 1); let (next_reg, candidate, implicit_ref) = if intreg { let candidate = match args_or_rets { ArgsOrRets::Args => get_intreg_for_arg(next_gpr), ArgsOrRets::Rets => get_intreg_for_ret(next_gpr), }; (&mut next_gpr, candidate, None) } else if fltreg { let candidate = match args_or_rets { ArgsOrRets::Args => get_fltreg_for_arg(next_fpr), ArgsOrRets::Rets => get_fltreg_for_ret(next_fpr), }; (&mut next_fpr, candidate, None) } else if vecreg { let candidate = match args_or_rets { ArgsOrRets::Args => get_vecreg_for_arg(next_vr), ArgsOrRets::Rets => get_vecreg_for_ret(next_vr), }; (&mut next_vr, candidate, None) } else { // We must pass this by implicit reference. if args_or_rets == ArgsOrRets::Rets { // For return values, just force them to memory. (&mut next_gpr, None, None) } else { // For arguments, implicitly convert to pointer type. let implicit_ref = Some(param.value_type); param = ir::AbiParam::new(types::I64); let candidate = get_intreg_for_arg(next_gpr); (&mut next_gpr, candidate, implicit_ref) } }; let slot = if let Some(reg) = candidate { *next_reg += 1; ABIArgSlot::Reg { reg: reg.to_real_reg().unwrap(), ty: param.value_type, extension: param.extension, } } else { // Compute size. Every argument or return value takes a slot of // at least 8 bytes. let size = (ty_bits(param.value_type) / 8) as u32; let slot_size = std::cmp::max(size, 8); // Align the stack slot. debug_assert!(slot_size.is_power_of_two()); let slot_align = std::cmp::min(slot_size, 8); next_stack = align_to(next_stack, slot_align); // If the type is actually of smaller size (and the argument // was not extended), it is passed right-aligned. let offset = if size < slot_size && param.extension == ir::ArgumentExtension::None { slot_size - size } else { 0 }; let offset = (next_stack + offset) as i64; next_stack += slot_size; ABIArgSlot::Stack { offset, ty: param.value_type, extension: param.extension, } }; if let ir::ArgumentPurpose::StructArgument(size) = param.purpose { assert!(size % 8 == 0, "StructArgument size is not properly aligned"); args.push(ABIArg::StructArg { pointer: Some(slot), offset: 0, size: size as u64, purpose: param.purpose, }); } else if let Some(ty) = implicit_ref { assert!( (ty_bits(ty) / 8) % 8 == 0, "implicit argument size is not properly aligned" ); args.push(ABIArg::ImplicitPtrArg { pointer: slot, offset: 0, ty, purpose: param.purpose, }); } else { args.push(ABIArg::Slots { slots: smallvec![slot], purpose: param.purpose, }); } } next_stack = align_to(next_stack, 8); let extra_arg = if add_ret_area_ptr { debug_assert!(args_or_rets == ArgsOrRets::Args); // The return pointer is passed as first argument. if let Some(reg) = get_intreg_for_arg(0) { args.push(ABIArg::reg( reg.to_real_reg().unwrap(), types::I64, ir::ArgumentExtension::None, ir::ArgumentPurpose::Normal, )); } else { args.push(ABIArg::stack( next_stack as i64, types::I64, ir::ArgumentExtension::None, ir::ArgumentPurpose::Normal, )); next_stack += 8; } Some(args.args().len() - 1) } else { None }; // After all arguments are in their well-defined location, // allocate buffers for all StructArg or ImplicitPtrArg arguments. for arg in args.args_mut() { match arg { ABIArg::StructArg { offset, size, .. } => { *offset = next_stack as i64; next_stack += *size as u32; } ABIArg::ImplicitPtrArg { offset, ty, .. } => { *offset = next_stack as i64; next_stack += (ty_bits(*ty) / 8) as u32; } _ => {} } } // To avoid overflow issues, limit the arg/return size to something // reasonable -- here, 128 MB. if next_stack > STACK_ARG_RET_SIZE_LIMIT { return Err(CodegenError::ImplLimitExceeded); } Ok((next_stack, extra_arg)) } fn fp_to_arg_offset(_call_conv: isa::CallConv, _flags: &settings::Flags) -> i64 { 0 } fn gen_load_stack(mem: StackAMode, into_reg: Writable, ty: Type) -> Inst { Inst::gen_load(into_reg, mem.into(), ty) } fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Inst { Inst::gen_store(mem.into(), from_reg, ty) } fn gen_move(to_reg: Writable, from_reg: Reg, ty: Type) -> Inst { Inst::gen_move(to_reg, from_reg, ty) } fn gen_extend( to_reg: Writable, from_reg: Reg, signed: bool, from_bits: u8, to_bits: u8, ) -> Inst { assert!(from_bits < to_bits); Inst::Extend { rd: to_reg, rn: from_reg, signed, from_bits, to_bits, } } fn gen_args(args: Vec) -> Inst { Inst::Args { args } } fn gen_rets(rets: Vec) -> Inst { Inst::Rets { rets } } fn gen_add_imm( _call_conv: isa::CallConv, into_reg: Writable, from_reg: Reg, imm: u32, ) -> SmallInstVec { let mut insts = SmallVec::new(); if let Some(imm) = UImm12::maybe_from_u64(imm as u64) { insts.push(Inst::LoadAddr { rd: into_reg, mem: MemArg::BXD12 { base: from_reg, index: zero_reg(), disp: imm, flags: MemFlags::trusted(), }, }); } else if let Some(imm) = SImm20::maybe_from_i64(imm as i64) { insts.push(Inst::LoadAddr { rd: into_reg, mem: MemArg::BXD20 { base: from_reg, index: zero_reg(), disp: imm, flags: MemFlags::trusted(), }, }); } else { if from_reg != into_reg.to_reg() { insts.push(Inst::mov64(into_reg, from_reg)); } insts.push(Inst::AluRUImm32 { alu_op: ALUOp::AddLogical64, rd: into_reg, ri: into_reg.to_reg(), imm, }); } insts } fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec { let mut insts = SmallVec::new(); insts.push(Inst::CmpTrapRR { op: CmpOp::CmpL64, rn: stack_reg(), rm: limit_reg, cond: Cond::from_intcc(IntCC::UnsignedLessThanOrEqual), trap_code: ir::TrapCode::StackOverflow, }); insts } fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable, _ty: Type) -> Inst { let mem = mem.into(); Inst::LoadAddr { rd: into_reg, mem } } fn get_stacklimit_reg(_call_conv: isa::CallConv) -> Reg { spilltmp_reg() } fn gen_load_base_offset(into_reg: Writable, base: Reg, offset: i32, ty: Type) -> Inst { let mem = MemArg::reg_plus_off(base, offset.into(), MemFlags::trusted()); Inst::gen_load(into_reg, mem, ty) } fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Inst { let mem = MemArg::reg_plus_off(base, offset.into(), MemFlags::trusted()); Inst::gen_store(mem, from_reg, ty) } fn gen_sp_reg_adjust(imm: i32) -> SmallInstVec { if imm == 0 { return SmallVec::new(); } let mut insts = SmallVec::new(); if let Ok(imm) = i16::try_from(imm) { insts.push(Inst::AluRSImm16 { alu_op: ALUOp::Add64, rd: writable_stack_reg(), ri: stack_reg(), imm, }); } else { insts.push(Inst::AluRSImm32 { alu_op: ALUOp::Add64, rd: writable_stack_reg(), ri: stack_reg(), imm, }); } insts } fn gen_nominal_sp_adj(offset: i32) -> Inst { Inst::VirtualSPOffsetAdj { offset: offset.into(), } } fn gen_prologue_frame_setup( _call_conv: isa::CallConv, _flags: &settings::Flags, _isa_flags: &s390x_settings::Flags, _frame_layout: &FrameLayout, ) -> SmallInstVec { SmallVec::new() } fn gen_epilogue_frame_restore( call_conv: isa::CallConv, _flags: &settings::Flags, _isa_flags: &s390x_settings::Flags, frame_layout: &FrameLayout, ) -> SmallInstVec { let mut insts = SmallVec::new(); if call_conv == isa::CallConv::Tail && frame_layout.stack_args_size > 0 { insts.extend(Self::gen_sp_reg_adjust( frame_layout.stack_args_size.try_into().unwrap(), )); } insts.push(Inst::Ret { link: gpr(14) }); insts } fn gen_probestack(_insts: &mut SmallInstVec, _: u32) { // TODO: implement if we ever require stack probes on an s390x host // (unlikely unless Lucet is ported) unimplemented!("Stack probing is unimplemented on S390x"); } fn gen_inline_probestack( _insts: &mut SmallInstVec, _call_conv: isa::CallConv, _frame_size: u32, _guard_size: u32, ) { unimplemented!("Inline stack probing is unimplemented on S390x"); } fn gen_clobber_save( _call_conv: isa::CallConv, flags: &settings::Flags, frame_layout: &FrameLayout, ) -> SmallVec<[Inst; 16]> { let mut insts = SmallVec::new(); // Collect clobbered registers. let (first_clobbered_gpr, clobbered_fpr) = get_clobbered_gpr_fpr(&frame_layout.clobbered_callee_saves); if flags.unwind_info() { insts.push(Inst::Unwind { inst: UnwindInst::DefineNewFrame { offset_upward_to_caller_sp: REG_SAVE_AREA_SIZE, offset_downward_to_clobbers: frame_layout.clobber_size, }, }); } // Use STMG to save clobbered GPRs into save area. if first_clobbered_gpr < 16 { let offset = 8 * first_clobbered_gpr as i64; insts.push(Inst::StoreMultiple64 { rt: gpr(first_clobbered_gpr), rt2: gpr(15), mem: MemArg::reg_plus_off(stack_reg(), offset, MemFlags::trusted()), }); } if flags.unwind_info() { for i in first_clobbered_gpr..16 { insts.push(Inst::Unwind { inst: UnwindInst::SaveReg { clobber_offset: frame_layout.clobber_size + (i * 8) as u32, reg: gpr(i).to_real_reg().unwrap(), }, }); } } // Save current stack pointer value if we need to write the backchain. if flags.preserve_frame_pointers() { insts.push(Inst::mov64(writable_gpr(1), stack_reg())); } // Decrement stack pointer. let stack_size = frame_layout.outgoing_args_size as i32 + frame_layout.clobber_size as i32 + frame_layout.fixed_frame_storage_size as i32; insts.extend(Self::gen_sp_reg_adjust(-stack_size)); if flags.unwind_info() { insts.push(Inst::Unwind { inst: UnwindInst::StackAlloc { size: stack_size as u32, }, }); } let sp_adj = frame_layout.outgoing_args_size as i32; if sp_adj > 0 { insts.push(Self::gen_nominal_sp_adj(sp_adj)); } // Write the stack backchain if requested, using the value saved above. if flags.preserve_frame_pointers() { insts.push(Inst::Store64 { rd: gpr(1), mem: MemArg::reg_plus_off(stack_reg(), 0, MemFlags::trusted()), }); } // Save FPRs. for (i, reg) in clobbered_fpr.iter().enumerate() { insts.push(Inst::VecStoreLane { size: 64, rd: reg.to_reg().into(), mem: MemArg::reg_plus_off( stack_reg(), (i * 8) as i64 + frame_layout.outgoing_args_size as i64 + frame_layout.fixed_frame_storage_size as i64, MemFlags::trusted(), ), lane_imm: 0, }); if flags.unwind_info() { insts.push(Inst::Unwind { inst: UnwindInst::SaveReg { clobber_offset: (i * 8) as u32, reg: reg.to_reg(), }, }); } } insts } fn gen_clobber_restore( _call_conv: isa::CallConv, _flags: &settings::Flags, frame_layout: &FrameLayout, ) -> SmallVec<[Inst; 16]> { let mut insts = SmallVec::new(); // Collect clobbered registers. let (first_clobbered_gpr, clobbered_fpr) = get_clobbered_gpr_fpr(&frame_layout.clobbered_callee_saves); // Restore FPRs. for (i, reg) in clobbered_fpr.iter().enumerate() { insts.push(Inst::VecLoadLaneUndef { size: 64, rd: Writable::from_reg(reg.to_reg().into()), mem: MemArg::reg_plus_off( stack_reg(), (i * 8) as i64 + frame_layout.outgoing_args_size as i64 + frame_layout.fixed_frame_storage_size as i64, MemFlags::trusted(), ), lane_imm: 0, }); } // Increment stack pointer unless it will be restored implicitly. let stack_size = frame_layout.outgoing_args_size as i32 + frame_layout.clobber_size as i32 + frame_layout.fixed_frame_storage_size as i32; let implicit_sp_restore = first_clobbered_gpr < 16 && SImm20::maybe_from_i64(8 * first_clobbered_gpr as i64 + stack_size as i64).is_some(); if !implicit_sp_restore { insts.extend(Self::gen_sp_reg_adjust(stack_size)); } // Use LMG to restore clobbered GPRs from save area. if first_clobbered_gpr < 16 { let mut offset = 8 * first_clobbered_gpr as i64; if implicit_sp_restore { offset += stack_size as i64; } insts.push(Inst::LoadMultiple64 { rt: writable_gpr(first_clobbered_gpr), rt2: writable_gpr(15), mem: MemArg::reg_plus_off(stack_reg(), offset, MemFlags::trusted()), }); } insts } fn gen_call( _dest: &CallDest, _uses: CallArgList, _defs: CallRetList, _clobbers: PRegSet, _opcode: ir::Opcode, _tmp: Writable, _callee_conv: isa::CallConv, _caller_conv: isa::CallConv, _callee_pop_size: u32, ) -> SmallVec<[Inst; 2]> { unreachable!(); } fn gen_memcpy Writable>( _call_conv: isa::CallConv, _dst: Reg, _src: Reg, _size: usize, _alloc: F, ) -> SmallVec<[Self::I; 8]> { unimplemented!("StructArgs not implemented for S390X yet"); } fn get_number_of_spillslots_for_value( rc: RegClass, _vector_scale: u32, _isa_flags: &Self::F, ) -> u32 { // We allocate in terms of 8-byte slots. match rc { RegClass::Int => 1, RegClass::Float => 2, RegClass::Vector => unreachable!(), } } /// Get the current virtual-SP offset from an instruction-emission state. fn get_virtual_sp_offset_from_state(s: &EmitState) -> i64 { s.virtual_sp_offset } /// Get the nominal-SP-to-FP offset from an instruction-emission state. fn get_nominal_sp_to_fp(s: &EmitState) -> i64 { s.initial_sp_offset } fn get_machine_env(_flags: &settings::Flags, _call_conv: isa::CallConv) -> &MachineEnv { static MACHINE_ENV: OnceLock = OnceLock::new(); MACHINE_ENV.get_or_init(create_machine_env) } fn get_regs_clobbered_by_call(_call_conv_of_callee: isa::CallConv) -> PRegSet { CLOBBERS } fn get_ext_mode( _call_conv: isa::CallConv, specified: ir::ArgumentExtension, ) -> ir::ArgumentExtension { specified } fn compute_frame_layout( call_conv: isa::CallConv, flags: &settings::Flags, _sig: &Signature, regs: &[Writable], _is_leaf: bool, stack_args_size: u32, fixed_frame_storage_size: u32, mut outgoing_args_size: u32, ) -> FrameLayout { assert!( !flags.enable_pinned_reg(), "Pinned register not supported on s390x" ); let mut regs: Vec> = regs .iter() .cloned() .filter(|r| is_reg_saved_in_prologue(call_conv, r.to_reg())) .collect(); // If the front end asks to preserve frame pointers (which we do not // really have in the s390x ABI), we use the stack backchain instead. // For this to work in all cases, we must allocate a stack frame with // at least the outgoing register save area even in leaf functions. // Update our caller's outgoing_args_size to reflect this. if flags.preserve_frame_pointers() { if outgoing_args_size < REG_SAVE_AREA_SIZE { outgoing_args_size = REG_SAVE_AREA_SIZE; } } // We need to save/restore the link register in non-leaf functions. // This is not included in the clobber list because we have excluded // call instructions via the is_included_in_clobbers callback. // We also want to enforce saving the link register in leaf functions // for stack unwinding, if we're asked to preserve frame pointers. if outgoing_args_size > 0 { let link_reg = Writable::from_reg(RealReg::from(gpr_preg(14))); if !regs.contains(&link_reg) { regs.push(link_reg); } } // Sort registers for deterministic code output. We can do an unstable // sort because the registers will be unique (there are no dups). regs.sort_unstable_by_key(|r| PReg::from(r.to_reg()).index()); // Compute clobber size. We only need to count FPR save slots. let mut clobber_size = 0; for reg in ®s { match reg.to_reg().class() { RegClass::Int => {} RegClass::Float => { clobber_size += 8; } RegClass::Vector => unreachable!(), } } // Return FrameLayout structure. FrameLayout { stack_args_size, setup_area_size: 0, clobber_size, fixed_frame_storage_size, outgoing_args_size, clobbered_callee_saves: regs, } } } fn is_reg_saved_in_prologue(_call_conv: isa::CallConv, r: RealReg) -> bool { match r.class() { RegClass::Int => { // r6 - r15 inclusive are callee-saves. r.hw_enc() >= 6 && r.hw_enc() <= 15 } RegClass::Float => { // f8 - f15 inclusive are callee-saves. r.hw_enc() >= 8 && r.hw_enc() <= 15 } RegClass::Vector => unreachable!(), } } fn get_clobbered_gpr_fpr( clobbered_callee_saves: &[Writable], ) -> (u8, SmallVec<[Writable; 8]>) { // Collect clobbered registers. Note we save/restore GPR always as // a block of registers using LOAD MULTIPLE / STORE MULTIPLE, starting // with the clobbered GPR with the lowest number up to %r15. We // return the number of that first GPR (or 16 if none is to be saved). let mut clobbered_fpr = SmallVec::new(); let mut first_clobbered_gpr = 16; for ® in clobbered_callee_saves.iter() { match reg.to_reg().class() { RegClass::Int => { let enc = reg.to_reg().hw_enc(); if enc < first_clobbered_gpr { first_clobbered_gpr = enc; } } RegClass::Float => clobbered_fpr.push(reg), RegClass::Vector => unreachable!(), } } (first_clobbered_gpr, clobbered_fpr) } const fn clobbers() -> PRegSet { PRegSet::empty() .with(gpr_preg(0)) .with(gpr_preg(1)) .with(gpr_preg(2)) .with(gpr_preg(3)) .with(gpr_preg(4)) .with(gpr_preg(5)) // v0 - v7 inclusive and v16 - v31 inclusive are // caller-saves. The upper 64 bits of v8 - v15 inclusive are // also caller-saves. However, because we cannot currently // represent partial registers to regalloc2, we indicate here // that every vector register is caller-save. Because this // function is used at *callsites*, approximating in this // direction (save more than necessary) is conservative and // thus safe. // // Note that we exclude clobbers from a call instruction when // a call instruction's callee has the same ABI as the caller // (the current function body); this is safe (anything // clobbered by callee can be clobbered by caller as well) and // avoids unnecessary saves of v8-v15 in the prologue even // though we include them as defs here. .with(vr_preg(0)) .with(vr_preg(1)) .with(vr_preg(2)) .with(vr_preg(3)) .with(vr_preg(4)) .with(vr_preg(5)) .with(vr_preg(6)) .with(vr_preg(7)) .with(vr_preg(8)) .with(vr_preg(9)) .with(vr_preg(10)) .with(vr_preg(11)) .with(vr_preg(12)) .with(vr_preg(13)) .with(vr_preg(14)) .with(vr_preg(15)) .with(vr_preg(16)) .with(vr_preg(17)) .with(vr_preg(18)) .with(vr_preg(19)) .with(vr_preg(20)) .with(vr_preg(21)) .with(vr_preg(22)) .with(vr_preg(23)) .with(vr_preg(24)) .with(vr_preg(25)) .with(vr_preg(26)) .with(vr_preg(27)) .with(vr_preg(28)) .with(vr_preg(29)) .with(vr_preg(30)) .with(vr_preg(31)) } const CLOBBERS: PRegSet = clobbers(); fn create_machine_env() -> MachineEnv { MachineEnv { preferred_regs_by_class: [ vec![ // no r0; can't use for addressing? // no r1; it is our spilltmp. gpr_preg(2), gpr_preg(3), gpr_preg(4), gpr_preg(5), ], vec![ vr_preg(0), vr_preg(1), vr_preg(2), vr_preg(3), vr_preg(4), vr_preg(5), vr_preg(6), vr_preg(7), vr_preg(16), vr_preg(17), vr_preg(18), vr_preg(19), vr_preg(20), vr_preg(21), vr_preg(22), vr_preg(23), vr_preg(24), vr_preg(25), vr_preg(26), vr_preg(27), vr_preg(28), vr_preg(29), vr_preg(30), vr_preg(31), ], // Vector Regclass is unused vec![], ], non_preferred_regs_by_class: [ vec![ gpr_preg(6), gpr_preg(7), gpr_preg(8), gpr_preg(9), gpr_preg(10), gpr_preg(11), gpr_preg(12), gpr_preg(13), gpr_preg(14), // no r15; it is the stack pointer. ], vec![ vr_preg(8), vr_preg(9), vr_preg(10), vr_preg(11), vr_preg(12), vr_preg(13), vr_preg(14), vr_preg(15), ], // Vector Regclass is unused vec![], ], fixed_stack_slots: vec![], scratch_by_class: [None, None, None], } }