module TensorFlow class Tensor def initialize(value = nil, pointer: nil, dtype: nil, shape: nil) @status = FFI.TF_NewStatus if pointer @pointer = pointer else data = Array(value) shape ||= calculate_shape(value) if shape.size > 0 dims_ptr = ::FFI::MemoryPointer.new(:int64, shape.size) dims_ptr.write_array_of_int64(shape) else dims_ptr = nil end data = data.flatten dtype ||= Utils.infer_type(value) type = FFI::DataType[dtype] case dtype when :string data_ptr = string_ptr(data) when :float data_ptr = ::FFI::MemoryPointer.new(:float, data.size) data_ptr.write_array_of_float(data) when :int32 data_ptr = ::FFI::MemoryPointer.new(:int32, data.size) data_ptr.write_array_of_int32(data) else raise "Unknown type: #{dtype}" end callback = ::FFI::Function.new(:void, [:pointer, :size_t, :pointer]) do |data, len, arg| # FFI handles deallocation end tensor = FFI.TF_NewTensor(type, dims_ptr, shape.size, data_ptr, data_ptr.size, callback, nil) @pointer = FFI.TFE_NewTensorHandle(tensor, @status) check_status @status end # TODO fix segfault # ObjectSpace.define_finalizer(self, self.class.finalize(@pointer)) end def +(other) TensorFlow.add(self, other) end def -(other) TensorFlow.subtract(self, other) end def *(other) TensorFlow.multiply(self, other) end def /(other) TensorFlow.divide(self, other) end def %(other) TensorFlow.floormod(self, other) end def num_dims ret = FFI.TFE_TensorHandleNumDims(@pointer, @status) check_status @status ret end def dtype @dtype ||= FFI::DataType[FFI.TFE_TensorHandleDataType(@pointer)] end def element_count ret = FFI.TFE_TensorHandleNumElements(@pointer, @status) check_status @status ret end def shape @shape ||= begin shape = [] num_dims.times do |i| shape << FFI.TFE_TensorHandleDim(@pointer, i, @status) check_status @status end shape end end def data_pointer tensor = FFI.TFE_TensorHandleResolve(@pointer, @status) check_status @status FFI.TF_TensorData(tensor) end def to_ptr @pointer end def value value = case dtype when :float data_pointer.read_array_of_float(element_count) when :int32 data_pointer.read_array_of_int32(element_count) when :string # string tensor format # https://github.com/tensorflow/tensorflow/blob/5453aee48858fd375172d7ae22fad1557e8557d6/tensorflow/c/tf_tensor.h#L57 start_offset_size = element_count * 8 offsets = data_pointer.read_array_of_uint64(element_count) element_count.times.map { |i| (data_pointer + start_offset_size + offsets[i]).read_string } when :bool data_pointer.read_array_of_int8(element_count).map { |v| v == 1 } when :resource return data_pointer else raise "Unknown type: #{dtype}" end reshape(value, shape) end def to_s inspect end def to_i value.to_i end def to_a value end def inspect inspection = %w(value shape dtype).map { |v| "#{v}: #{send(v).inspect}"} "#<#{self.class} #{inspection.join(", ")}>" end def self.finalize(pointer) # must use proc instead of stabby lambda proc { FFI.TFE_DeleteTensorHandle(pointer) } end private def reshape(arr, dims) return arr.first if dims.empty? arr = arr.flatten dims[1..-1].reverse.each do |dim| arr = arr.each_slice(dim) end arr.to_a end def calculate_shape(value) shape = [] d = value while d.is_a?(Array) shape << d.size d = d.first end shape end # string tensor format # https://github.com/tensorflow/tensorflow/blob/5453aee48858fd375172d7ae22fad1557e8557d6/tensorflow/c/tf_tensor.h#L57 def string_ptr(data) start_offset_size = data.size * 8 offsets = [0] data.each do |str| offsets << str.bytesize + 1 end data_ptr = ::FFI::MemoryPointer.new(:char, start_offset_size + offsets.pop) data_ptr.write_array_of_uint64(offsets) data.zip(offsets) do |str, off| (data_ptr + start_offset_size + off).write_string(str) end data_ptr end def check_status(status) Utils.check_status(status) end end end