/* ----------------------------------------------------------------------- prep_cif.c - Copyright (c) 2011, 2012, 2021 Anthony Green Copyright (c) 1996, 1998, 2007 Red Hat, Inc. Copyright (c) 2022 Oracle and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include #include #include /* Round up to FFI_SIZEOF_ARG. */ #define STACK_ARG_SIZE(x) FFI_ALIGN(x, FFI_SIZEOF_ARG) /* Perform machine independent initialization of aggregate type specifications. */ static ffi_status initialize_aggregate(ffi_type *arg, size_t *offsets) { ffi_type **ptr; if (UNLIKELY(arg == NULL || arg->elements == NULL)) return FFI_BAD_TYPEDEF; arg->size = 0; arg->alignment = 0; ptr = &(arg->elements[0]); if (UNLIKELY(ptr == 0)) return FFI_BAD_TYPEDEF; while ((*ptr) != NULL) { if (UNLIKELY(((*ptr)->size == 0) && (initialize_aggregate((*ptr), NULL) != FFI_OK))) return FFI_BAD_TYPEDEF; /* Perform a sanity check on the argument type */ FFI_ASSERT_VALID_TYPE(*ptr); arg->size = FFI_ALIGN(arg->size, (*ptr)->alignment); if (offsets) *offsets++ = arg->size; arg->size += (*ptr)->size; arg->alignment = (arg->alignment > (*ptr)->alignment) ? arg->alignment : (*ptr)->alignment; ptr++; } /* Structure size includes tail padding. This is important for structures that fit in one register on ABIs like the PowerPC64 Linux ABI that right justify small structs in a register. It's also needed for nested structure layout, for example struct A { long a; char b; }; struct B { struct A x; char y; }; should find y at an offset of 2*sizeof(long) and result in a total size of 3*sizeof(long). */ arg->size = FFI_ALIGN (arg->size, arg->alignment); /* On some targets, the ABI defines that structures have an additional alignment beyond the "natural" one based on their elements. */ #ifdef FFI_AGGREGATE_ALIGNMENT if (FFI_AGGREGATE_ALIGNMENT > arg->alignment) arg->alignment = FFI_AGGREGATE_ALIGNMENT; #endif if (arg->size == 0) return FFI_BAD_TYPEDEF; else return FFI_OK; } #ifndef __CRIS__ /* The CRIS ABI specifies structure elements to have byte alignment only, so it completely overrides this functions, which assumes "natural" alignment and padding. */ /* Perform machine independent ffi_cif preparation, then call machine dependent routine. */ /* For non variadic functions isvariadic should be 0 and nfixedargs==ntotalargs. For variadic calls, isvariadic should be 1 and nfixedargs and ntotalargs set as appropriate. nfixedargs must always be >=1 */ ffi_status FFI_HIDDEN ffi_prep_cif_core(ffi_cif *cif, ffi_abi abi, unsigned int isvariadic, unsigned int nfixedargs, unsigned int ntotalargs, ffi_type *rtype, ffi_type **atypes) { unsigned bytes = 0; unsigned int i; ffi_type **ptr; FFI_ASSERT(cif != NULL); FFI_ASSERT((!isvariadic) || (nfixedargs >= 1)); FFI_ASSERT(nfixedargs <= ntotalargs); if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)) return FFI_BAD_ABI; cif->abi = abi; cif->arg_types = atypes; cif->nargs = ntotalargs; cif->rtype = rtype; cif->flags = 0; #if (defined(_M_ARM64) || defined(__aarch64__)) && defined(_WIN32) cif->is_variadic = isvariadic; #endif #if HAVE_LONG_DOUBLE_VARIANT ffi_prep_types (abi); #endif /* Initialize the return type if necessary */ if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype, NULL) != FFI_OK)) return FFI_BAD_TYPEDEF; #ifndef FFI_TARGET_HAS_COMPLEX_TYPE if (rtype->type == FFI_TYPE_COMPLEX) abort(); #endif /* Perform a sanity check on the return type */ FFI_ASSERT_VALID_TYPE(cif->rtype); /* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */ #if !defined FFI_TARGET_SPECIFIC_STACK_SPACE_ALLOCATION /* Make space for the return structure pointer */ if (cif->rtype->type == FFI_TYPE_STRUCT #ifdef TILE && (cif->rtype->size > 10 * FFI_SIZEOF_ARG) #endif #ifdef XTENSA && (cif->rtype->size > 16) #endif #ifdef NIOS2 && (cif->rtype->size > 8) #endif ) bytes = STACK_ARG_SIZE(sizeof(void*)); #endif for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { /* Initialize any uninitialized aggregate type definitions */ if (((*ptr)->size == 0) && (initialize_aggregate((*ptr), NULL) != FFI_OK)) return FFI_BAD_TYPEDEF; #ifndef FFI_TARGET_HAS_COMPLEX_TYPE if ((*ptr)->type == FFI_TYPE_COMPLEX) abort(); #endif /* Perform a sanity check on the argument type, do this check after the initialization. */ FFI_ASSERT_VALID_TYPE(*ptr); #if !defined FFI_TARGET_SPECIFIC_STACK_SPACE_ALLOCATION { /* Add any padding if necessary */ if (((*ptr)->alignment - 1) & bytes) bytes = (unsigned)FFI_ALIGN(bytes, (*ptr)->alignment); #ifdef TILE if (bytes < 10 * FFI_SIZEOF_ARG && bytes + STACK_ARG_SIZE((*ptr)->size) > 10 * FFI_SIZEOF_ARG) { /* An argument is never split between the 10 parameter registers and the stack. */ bytes = 10 * FFI_SIZEOF_ARG; } #endif #ifdef XTENSA if (bytes <= 6*4 && bytes + STACK_ARG_SIZE((*ptr)->size) > 6*4) bytes = 6*4; #endif bytes += (unsigned int)STACK_ARG_SIZE((*ptr)->size); } #endif } cif->bytes = bytes; /* Perform machine dependent cif processing */ #ifdef FFI_TARGET_SPECIFIC_VARIADIC if (isvariadic) return ffi_prep_cif_machdep_var(cif, nfixedargs, ntotalargs); #endif return ffi_prep_cif_machdep(cif); } #endif /* not __CRIS__ */ ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs, ffi_type *rtype, ffi_type **atypes) { return ffi_prep_cif_core(cif, abi, 0, nargs, nargs, rtype, atypes); } ffi_status ffi_prep_cif_var(ffi_cif *cif, ffi_abi abi, unsigned int nfixedargs, unsigned int ntotalargs, ffi_type *rtype, ffi_type **atypes) { ffi_status rc; size_t int_size = ffi_type_sint.size; unsigned int i; rc = ffi_prep_cif_core(cif, abi, 1, nfixedargs, ntotalargs, rtype, atypes); if (rc != FFI_OK) return rc; for (i = nfixedargs; i < ntotalargs; i++) { ffi_type *arg_type = atypes[i]; if (arg_type == &ffi_type_float || ((arg_type->type != FFI_TYPE_STRUCT && arg_type->type != FFI_TYPE_COMPLEX) && arg_type->size < int_size)) return FFI_BAD_ARGTYPE; } return FFI_OK; } #if FFI_CLOSURES ffi_status ffi_prep_closure (ffi_closure* closure, ffi_cif* cif, void (*fun)(ffi_cif*,void*,void**,void*), void *user_data) { return ffi_prep_closure_loc (closure, cif, fun, user_data, closure); } #endif ffi_status ffi_get_struct_offsets (ffi_abi abi, ffi_type *struct_type, size_t *offsets) { if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)) return FFI_BAD_ABI; if (struct_type->type != FFI_TYPE_STRUCT) return FFI_BAD_TYPEDEF; #if HAVE_LONG_DOUBLE_VARIANT ffi_prep_types (abi); #endif return initialize_aggregate(struct_type, offsets); }