/* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2001 * * Last modified: * $Date: 2006-08-04 16:06:52 +0200 (Fri, 04 Aug 2006) $ by $Author: schulte $ * $Revision: 3517 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * See the file "LICENSE" for information on usage and * redistribution of this file, and for a * DISCLAIMER OF ALL WARRANTIES. * */ #include "examples/support.hh" #include "gecode/minimodel.hh" /** * \brief %Example: Magic sequence * * Find a magic sequence of length \f$n\f$. A magic sequence of * length \f$n\f$ is a sequence \f[x_0,x_1, \ldots, x_{n-1}\f] * of integers such that for every \f$i=0,\ldots,n-1\f$: * - \f$x_i\f$ is an integer between \f$0\f$ and \f$n-1\f$. * - the number \f$i\f$ occurs exactly \f$x_i\f$ times in the sequence. * * \ingroup Example * */ class MagicSequence : public Example { private: /// Length of sequence const int n; /// Sequence IntVarArray s; public: /// Naive version for counting number of ocurrences of \a i void exactly(IntVarArray& v, IntVar& x, int i) { // I occurs in V X times BoolVarArgs b(v.size()); for (int j = v.size(); j--; ) b[j] = post(this, ~(v[j] == i)); linear(this, b, IRT_EQ, x); } /// The actual model MagicSequence(const Options& opt) : n(opt.size), s(this,n,0,n-1) { if (opt.naive) for (int i=n; i--; ) exactly(s, s[i], i); else for (int i=n; i--; ) count(this, s, i, IRT_EQ, s[i]); linear(this, s, IRT_EQ, n); IntArgs c(n); for (int j = n; j--; ) c[j] = j-1; linear(this, c, s, IRT_EQ, 0); branch(this, s, BVAR_NONE, BVAL_SPLIT_MAX); } /// Constructor for cloning \a e MagicSequence(bool share, MagicSequence& e) : Example(share,e), n(e.n) { s.update(this, share, e.s); } /// Copy during cloning virtual Space* copy(bool share) { return new MagicSequence(share,*this); } /// Print sequence virtual void print(void) { std::cout << "\t"; for (int i = 0; i(opt); return 0; } // STATISTICS: example-any