module DNN module Models # This class deals with the model of the network. class Model attr_accessor :optimizer attr_accessor :loss_func # Load marshal model. # @param [String] file_name File name of marshal model to load. def self.load(file_name) loader = Loaders::MarshalLoader.new(self.new) loader.load(file_name) end def initialize @optimizer = nil @loss_func = nil @last_link = nil @built = false @callbacks = { before_epoch: [], after_epoch: [], before_train_on_batch: [], after_train_on_batch: [], before_test_on_batch: [], after_test_on_batch: [], } @layers_cache = nil end # This method is provided for compatibility with v0.12.4. # Load hash model parameters. # @param [Hash] hash Hash to load model parameters. def load_hash_params(hash) has_param_layers_params = hash[:params] has_param_layers_index = 0 has_param_layers.uniq.each do |layer| hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, bin)| data = Xumo::SFloat.from_binary(bin).reshape(*shape) layer.get_params[key].data = data end has_param_layers_index += 1 end end # This method is provided for compatibility with v0.12.4. # Load json model parameters. # @param [String] json_str JSON string to load model parameters. def load_json_params(json_str) hash = JSON.parse(json_str, symbolize_names: true) has_param_layers_params = hash[:params] has_param_layers_index = 0 has_param_layers.uniq.each do |layer| hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, base64_param)| bin = Base64.decode64(base64_param) data = Xumo::SFloat.from_binary(bin).reshape(*shape) layer.get_params[key].data = data end has_param_layers_index += 1 end end # Set optimizer and loss_func to model. # @param [DNN::Optimizers::Optimizer] optimizer Optimizer to use for learning. # @param [DNN::Losses::Loss] loss_func Loss function to use for learning. def setup(optimizer, loss_func) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError.new("optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class.") end unless loss_func.is_a?(Losses::Loss) raise TypeError.new("loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class.") end @optimizer = optimizer @loss_func = loss_func end # Start training. # Setup the model before use this method. # @param [Numo::SFloat] x Input training data. # @param [Numo::SFloat] y Output training data. # @param [Integer] epochs Number of training. # @param [Integer] batch_size Batch size used for one training. # @param [Array | NilClass] test If you to test the model for every 1 epoch, # specify [x_test, y_test]. Don't test to the model, specify nil. # @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed. def train(x, y, epochs, batch_size: 1, test: nil, verbose: true) raise DNN_Error.new("The model is not optimizer setup complete.") unless @optimizer raise DNN_Error.new("The model is not loss_func setup complete.") unless @loss_func check_xy_type(x, y) iter = Iterator.new(x, y) num_train_datas = x.is_a?(Array) ? x[0].shape[0] : x.shape[0] (1..epochs).each do |epoch| call_callbacks(:before_epoch, epoch) puts "【 epoch #{epoch}/#{epochs} 】" if verbose iter.foreach(batch_size) do |x_batch, y_batch, index| loss_value = train_on_batch(x_batch, y_batch) if loss_value.is_a?(Xumo::SFloat) loss_value = loss_value.mean elsif loss_value.nan? puts "\nloss is nan" if verbose return end num_trained_datas = (index + 1) * batch_size num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas log = "\r" 40.times do |i| if i < num_trained_datas * 40 / num_train_datas log << "=" elsif i == num_trained_datas * 40 / num_train_datas log << ">" else log << "_" end end log << " #{num_trained_datas}/#{num_train_datas} loss: #{sprintf('%.8f', loss_value)}" print log if verbose end if test acc, test_loss = accuracy(test[0], test[1], batch_size: batch_size) print " accuracy: #{acc}, test loss: #{sprintf('%.8f', test_loss)}" if verbose end puts "" if verbose call_callbacks(:after_epoch, epoch) end end alias fit train # Training once. # Setup the model before use this method. # @param [Numo::SFloat] x Input training data. # @param [Numo::SFloat] y Output training data. # @return [Float | Numo::SFloat] Return loss value in the form of Float or Numo::SFloat. def train_on_batch(x, y) raise DNN_Error.new("The model is not optimizer setup complete.") unless @optimizer raise DNN_Error.new("The model is not loss_func setup complete.") unless @loss_func check_xy_type(x, y) call_callbacks(:before_train_on_batch) x = forward(x, true) loss_value = @loss_func.loss(x, y, layers) dy = @loss_func.backward(x, y) backward(dy) @optimizer.update(layers.uniq) @loss_func.regularizers_backward(layers) call_callbacks(:after_train_on_batch, loss_value) loss_value end # Evaluate model and get accuracy of test data. # @param [Numo::SFloat] x Input test data. # @param [Numo::SFloat] y Output test data. # @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss]. def accuracy(x, y, batch_size: 100) check_xy_type(x, y) num_test_datas = x.is_a?(Array) ? x[0].shape[0] : x.shape[0] batch_size = batch_size >= num_test_datas[0] ? num_test_datas : batch_size iter = Iterator.new(x, y, random: false) total_correct = 0 sum_loss = 0 max_steps = (num_test_datas.to_f / batch_size).ceil iter.foreach(batch_size) do |x_batch, y_batch| correct, loss_value = test_on_batch(x_batch, y_batch) total_correct += correct sum_loss += loss_value.is_a?(Xumo::SFloat) ? loss_value.mean : loss_value end mean_loss = sum_loss / max_steps [total_correct.to_f / num_test_datas, mean_loss] end # Evaluate once. # @param [Numo::SFloat] x Input test data. # @param [Numo::SFloat] y Output test data. # @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss]. def test_on_batch(x, y) call_callbacks(:before_test_on_batch) x = forward(x, false) correct = evaluate(x, y) loss_value = @loss_func.loss(x, y, layers) call_callbacks(:after_test_on_batch, loss_value) [correct, loss_value] end private def evaluate(y, t) if y.shape[1..-1] == [1] correct = 0 y.shape[0].times do |i| if @loss_func.is_a?(Losses::SigmoidCrossEntropy) correct += 1 if (y[i, 0] < 0 && t[i, 0] < 0.5) || (y[i, 0] >= 0 && t[i, 0] >= 0.5) else correct += 1 if (y[i, 0] < 0 && t[i, 0] < 0) || (y[i, 0] >= 0 && t[i, 0] >= 0) end end else correct = y.max_index(axis: 1).eq(t.max_index(axis: 1)).count end correct end # Predict data. # @param [Numo::SFloat] x Input data. def predict(x) check_xy_type(x) forward(x, false) end # Predict one data. # @param [Numo::SFloat] x Input data. However, x is single data. def predict1(x) check_xy_type(x) predict(x.reshape(1, *x.shape))[0, false] end # Add callback function. # @param [Symbol] event Callback event. The following can be used for event. # before_epoch: Process: performed before one training. # after_epoch: Process: performed after one training. # before_train_on_batch: Set the proc to be performed before train on batch processing. # after_train_on_batch: Set the proc to be performed after train on batch processing. # before_test_on_batch: Set the proc to be performed before test on batch processing. # after_test_on_batch: Set the proc to be performed after test on batch processing. def add_callback(event, callback) raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event) @callbacks[event] << callback end # Clear the callback function registered for each event. # @param [Symbol] event Callback event. The following can be used for event. # before_epoch: Process: performed before one training. # after_epoch: Process: performed after one training. # before_train_on_batch: Set the proc to be performed before train on batch processing. # after_train_on_batch: Set the proc to be performed after train on batch processing. # before_test_on_batch: Set the proc to be performed before test on batch processing. # after_test_on_batch: Set the proc to be performed after test on batch processing. def clear_callbacks(event) raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event) @callbacks[event] = [] end # Save the model in marshal format. # @param [String] file_name Name to save model. def save(file_name) saver = Savers::MarshalSaver.new(self) saver.save(file_name) end # @return [DNN::Models::Model] Return the copy this model. def copy Marshal.load(Marshal.dump(self)) end # Get the all layers. # @return [Array] All layers array. def layers raise DNN_Error.new("This model is not built. You need build this model using predict or train.") unless built? return @layers_cache if @layers_cache layers = [] get_layers = -> link do return unless link layers.unshift(link.layer) if link.is_a?(TwoInputLink) get_layers.(link.prev1) get_layers.(link.prev2) else get_layers.(link.prev) end end get_layers.(@last_link) @layers_cache = layers end # Get the all has param layers. # @return [Array] All has param layers array. def has_param_layers layers.select { |layer| layer.is_a?(Layers::HasParamLayer) } end # Get the layer that the model has. # @param [Symbol] The name of the layer to get. # @return [DNN::Layers::Layer] Return the layer. def get_layer(name) layers.find { |layer| layer.name == name } end # @return [Boolean] If model have already been built then return true. def built? @built end private def forward(x, learning_phase) DNN.learning_phase = learning_phase @layers_cache = nil y, @last_link = call(x) unless @built @built = true naming end y end def backward(dy) @last_link.backward(dy) end def call_callbacks(event, *args) @callbacks[event].each do |callback| callback.call(*args) end end def naming layers.uniq.each do |layer| id = layers.uniq.select { |l| l.is_a?(layer.class) }.index(layer) class_name = layer.class.name.split("::").last layer.name = "#{class_name}_#{id}".to_sym unless layer.name if layer.is_a?(Layers::HasParamLayer) layer.get_params.each do |param_key, param| param.name = "#{layer.name}__#{param_key}".to_sym unless param.name end end end end def check_xy_type(x, y = nil) if !x.is_a?(Xumo::SFloat) && !x.is_a?(Array) raise TypeError.new("x:#{x.class.name} is not an instance of #{Xumo::SFloat.name} class or Array class.") end if y && !y.is_a?(Xumo::SFloat) && !x.is_a?(Array) raise TypeError.new("y:#{y.class.name} is not an instance of #{Xumo::SFloat.name} class or Array class.") end end end class Sequential < Model attr_reader :stack # @param [Array] stack All layers possessed by the model. def initialize(stack = []) super() @stack = stack.clone end # Add layer to the model. # @param [DNN::Layers::Layer] layer Layer to add to the model. # @return [DNN::Models::Model] Return self. def add(layer) unless layer.is_a?(Layers::Layer) || layer.is_a?(Model) raise TypeError.new("layer: #{layer.class.name} is not an instance of the DNN::Layers::Layer class or DNN::Models::Model class.") end @stack << layer self end alias << add # Remove layer to the model. # @param [DNN::Layers::Layer] layer Layer to remove to the model. # @return [Boolean] Return true if success for remove layer. def remove(layer) unless layer.is_a?(Layers::Layer) || layer.is_a?(Model) raise TypeError.new("layer: #{layer.class.name} is not an instance of the DNN::Layers::Layer class or DNN::Models::Model class.") end @stack.delete(layer) ? true : false end def call(x) @stack.each do |layer| x = layer.(x) end x end end end end