Sha256: 693b3c04364c3b8db1e0f07110d425bb4d34d6920d11c42f13cd99872a8e374b
Contents?: true
Size: 1.58 KB
Versions: 1
Compression:
Stored size: 1.58 KB
Contents
#!/usr/bin/env python # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import division, absolute_import, print_function from fasttext import train_unsupervised import numpy as np import os from scipy import stats # Because of fasttext we don't need to account for OOV def compute_similarity(data_path): def similarity(v1, v2): n1 = np.linalg.norm(v1) n2 = np.linalg.norm(v2) return np.dot(v1, v2) / n1 / n2 mysim = [] gold = [] with open(data_path, 'rb') as fin: for line in fin: tline = line.split() word1 = tline[0].lower() word2 = tline[1].lower() v1 = model.get_word_vector(word1) v2 = model.get_word_vector(word2) d = similarity(v1, v2) mysim.append(d) gold.append(float(tline[2])) corr = stats.spearmanr(mysim, gold) dataset = os.path.basename(data_path) correlation = corr[0] * 100 return dataset, correlation, 0 if __name__ == "__main__": model = train_unsupervised( input=os.path.join(os.getenv("DATADIR", ''), 'fil9'), model='skipgram', ) model.save_model("fil9.bin") dataset, corr, oov = compute_similarity('rw.txt') print("{0:20s}: {1:2.0f} (OOV: {2:2.0f}%)".format(dataset, corr, 0))
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
fasttext-0.1.0 | vendor/fastText/python/doc/examples/train_unsupervised.py |