/*************************************************************[implicative.cc] Copyright (c) 2007, Universite d'Orleans - Jeremie Vautard, Marco Benedetti, Arnaud Lallouet. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *****************************************************************************/ #include "implicative.hh" #include "myDom.cc" Implicative::Implicative(int ns,bool firstQ,int* nv) : QSpace() { n=0; for (int i=0;iupdate(this); prop_power=qc.prop_power; for (int i=0;istatus(rien) == SS_FAILED) { ruleDefined[i]=false; } else { rules[i]=static_cast(qc.rules[i]->clone()); ruleDefined[i]=true; } } if (!qc.goalDefined) { goalDefined=false; } else if (qc.goal->status(rien) == SS_FAILED) { goalDefined=false; } else { goal=static_cast(qc.goal->clone()); goalDefined=true; } for (unsigned int i=0;iv[i]); } } } Implicative::~Implicative() { for (int i=0;iv[var] = new IntVar(rules[i],min,max); rules[i]->type_of_v[var] = VTYPE_INT; } goal->v[var] = new IntVar(goal,min,max); goal->type_of_v[var] = VTYPE_INT; varInitialised[var]=true; type_of_v[var]=VTYPE_INT; } void Implicative::QBoolVar(int var,int min,int max) { if (varInitialised[var]) { cout<<"Variable "<v[var] = new BoolVar(rules[i],min,max); rules[i]->type_of_v[var]=VTYPE_BOOL; } goal->v[var] = new BoolVar(goal,min,max); goal->type_of_v[var]=VTYPE_BOOL; varInitialised[var]=true; type_of_v[var]=VTYPE_BOOL; } void Implicative::QIntVar(int var,IntSet dom) { if (varInitialised[var]) { cout<<"Variable "<v[var] = new IntVar(rules[i],dom); rules[i]->type_of_v[var] = VTYPE_INT; } goal->v[var] = new IntVar(goal,dom); goal->type_of_v[var] = VTYPE_INT; varInitialised[var]=true; type_of_v[var]=VTYPE_INT; } MySpace* Implicative::space() { if (currentDeclareSpace(space()->v[n])); } BoolVar Implicative::bvar(int n) { return *(static_cast(space()->v[n])); } int Implicative::nextScope() { if (currentDeclareSpace == -1) return -1; currentDeclareSpace++; if (currentDeclareSpace>nbSpaces) return -1; return currentDeclareSpace; } /* MySpace* Implicative::getRuleSpace(int sp) { bool var=true; for(int i=0;i= nbSpaces ) return NULL; return rules[sp]; } MySpace* Implicative::getGoalSpace() { bool var=true; for(int i=0;iv[i]; } w=new Warner(this); for(unsigned int i=0;i(rules[whichSpaceOwns[i]]->v[i])),w); break; case VTYPE_BOOL: BoolWarningProp::BoolWarning(rules[whichSpaceOwns[i]],i,*(static_cast(rules[whichSpaceOwns[i]]->v[i])),w); break; default: abort(); } } } bool Implicative::quantification(int v) { return q[v]; } // Returns the number of the first failed space (number of rule space, nbSpaces if goal, nbSpaces+1 if there is no failed space) int Implicative::cascade(int firstSpace, unsigned long int& propsteps) { int curSpace = firstSpace; while(curSpace < nbSpaces) { MySpace* nextSpace = (curSpace==nbSpaces-1)?goal:rules[curSpace+1]; bool* nextDefined = (curSpace==nbSpaces-1)?&goalDefined:&(ruleDefined[curSpace+1]); if (!ruleDefined[curSpace]) { return curSpace; } if (rules[curSpace]->status(propsteps) == SS_FAILED) { return curSpace; } if (*nextDefined) { if (nextSpace->status(propsteps) != SS_FAILED) { for (int i=0;i(nextSpace->v[i]))); IntView src(*(static_cast(rules[curSpace]->v[i]))); ViewRanges rg(src); if (dest.inter_r(nextSpace,rg) == ME_GEN_FAILED) { nextSpace->fail(); }; } break; case VTYPE_BOOL : { BoolView bdest(*(static_cast(nextSpace->v[i]))); BoolView bsrc(*(static_cast(rules[curSpace]->v[i]))); ViewRanges brg(bsrc); if (bdest.inter_r(nextSpace,brg) == ME_GEN_FAILED) { nextSpace->fail(); }; } break; } } } } curSpace++; } if (!goalDefined) { return nbSpaces; } if (goal->status(propsteps) == SS_FAILED) { return nbSpaces; } return nbSpaces+1; } int Implicative::status(int var, unsigned long int& propsteps) { int currentSpace=whichSpaceOwns[var]; currentSpace--; if (currentSpace<0) currentSpace=0; // First case : Strong propagation : /////////////////////////////////////////// // First, call cascade propagation. //////////////////////////////////////////// // We fail the spaces after the first failed one (so they are not ////////////// // copied anymore)////////////////////////////////////////////////////////////// if (prop_power == 2) { // int firstFailed=cascade(currentSpace,propsteps); // for (int i=firstFailed;ifail(); // } // if (firstFailed <= nbSpaces) { // if (goalDefined) // goal->fail(); // } // // if (firstFailed==currentSpace) { // return (quantification(var)?1:0); // } // // return -1; // } // //////////////////////////////////////////////////////////////////////////////// else { cout<<"Propagation "<status(propsteps) == SS_FAILED) // return q[ nbVarBySpace[i]-1 ] ? 1 : 0; // } // //////////////////////////////////////////////////////////////////////////////// // Step 2 : if we are here, then the rules were not violated. So, we check ///// // the goal. /////////////////////////////////////////////////////////////////// if (!goalDefined) // return 0; // if (goal->status(propsteps) == SS_FAILED) // return 0; // //////////////////////////////////////////////////////////////////////////////// // Step 3 : if we are here, then the rules were respected, and the goal //////// // is also true. So, the whole problem is true. //////////////////////////////// return 1; // //////////////////////////////////////////////////////////////////////////////// } bool Implicative::subsumed(int var) { int varSpace=whichSpaceOwns[var]; if (!ruleDefined[varSpace]) return true; switch (type_of_v[var]) { case VTYPE_INT : { IntVar* zeVar = static_cast(rules[varSpace]->v[var]); unsigned int varSize=zeVar->size(); if (zeVar->size() < 2) { return true; } if (zeVar->degree() > 1) { return false; } for (int i=varSpace+1;i(rules[i]->v[var])->degree() > 0) return false; if (static_cast(rules[i]->v[var])->size() < varSize) return false; } if (!goalDefined) { return true; } if (static_cast(goal->v[var])->degree() >0) { return false; } if (static_cast(goal->v[var])->size() < varSize) { return false; } //else return true; } break; case VTYPE_BOOL : { BoolVar* zeBVar = static_cast(rules[varSpace]->v[var]); unsigned int varBSize=zeBVar->size(); if (zeBVar->size() < 2) { return true; } if (zeBVar->degree() > 1) { return false; } for (int i=varSpace+1;i(rules[i]->v[var])->degree() > 0) return false; if (static_cast(rules[i]->v[var])->size() < varBSize) return false; } if (!goalDefined) { return true; } if (static_cast(goal->v[var])->degree() >0) { return false; } if (static_cast(goal->v[var])->size() < varBSize) { return false; } //else return true; } break; default : return false; } } Implicative* Implicative::clone() { Implicative* resultat=new Implicative(*this); return resultat; } void Implicative::assign_int(int var,int** vals,int nbVals) { if (type_of_v[var] != VTYPE_INT) { cout<<"Wrong variable type for assigning"<(s->v[var])) >= vals[0][0]); for (int j=1;j(s->v[var])),rg,ICL_DOM); } post(s,*(static_cast(s->v[var])) <= vals[1][nbVals-1]); } } } void Implicative::remove_int(int var,int** vals,int nbVals) { if (type_of_v[var] != VTYPE_INT) { cout<<"Wrong variable type for assigning"<(s->v[var])),rg,ICL_DOM); } } } } void Implicative::assign_bool(int var,int** vals,int nbVals) { if (type_of_v[var] != VTYPE_BOOL) { cout<<"Wrong variable type for assigning"<(s->v[var])) >= vals[0][0]); for (int j=1;j(s->v[var])),rg,ICL_DOM); } post(s,*(static_cast(s->v[var])) <= vals[1][nbVals-1]); } } } void Implicative::remove_bool(int var,int** vals,int nbVals) { if (type_of_v[var] != VTYPE_BOOL) { cout<<"Wrong variable type for assigning"<(s->v[var])),rg,ICL_DOM); } } } } void Implicative::assign_bool(int var,int b) { if (type_of_v[var] != VTYPE_INT) { cout<<"Wrong variable type for assigning"<(s->v[var])),IRT_EQ,b); } } } void Implicative::remove_bool(int var,int b) { if (type_of_v[var] != VTYPE_INT) { cout<<"Wrong variable type for assigning"<(s->v[var])),IRT_NQ,b); } } } void Implicative::backtrack() { w->update(this); } void Implicative::indicateBranchingHeuristic(BranchingHeuristic* bh) { w->setBH(bh); } void Implicative::print() { for (int i=0;iv[j]<<" "; cout<v[j]<<" "; cout<