class Time
interface _TimeLike
def year: () -> Integer
def mon: () -> Integer
def day: () -> Integer
end
#
# Return the number of seconds the specified time zone differs
# from UTC.
#
# Numeric time zones that include minutes, such as
# -10:00
or +1330
will work, as will
# simpler hour-only time zones like -10
or
# +13
.
#
# Textual time zones listed in ZoneOffset are also supported.
#
# If the time zone does not match any of the above, +zone_offset+
# will check if the local time zone (both with and without
# potential Daylight Saving \Time changes being in effect) matches
# +zone+. Specifying a value for +year+ will change the year used
# to find the local time zone.
#
# If +zone_offset+ is unable to determine the offset, nil will be
# returned.
#
# require 'time'
#
# Time.zone_offset("EST") #=> -18000
#
# You must require 'time' to use this method.
#
def self.zone_offset: (String zone, ?Integer year) -> Integer
#
# Takes a string representation of a Time and attempts to parse it
# using a heuristic.
#
# require 'time'
#
# Time.parse("2010-10-31") #=> 2010-10-31 00:00:00 -0500
#
# Any missing pieces of the date are inferred based on the current date.
#
# require 'time'
#
# # assuming the current date is "2011-10-31"
# Time.parse("12:00") #=> 2011-10-31 12:00:00 -0500
#
# We can change the date used to infer our missing elements by passing a second
# object that responds to #mon, #day and #year, such as Date, Time or DateTime.
# We can also use our own object.
#
# require 'time'
#
# class MyDate
# attr_reader :mon, :day, :year
#
# def initialize(mon, day, year)
# @mon, @day, @year = mon, day, year
# end
# end
#
# d = Date.parse("2010-10-28")
# t = Time.parse("2010-10-29")
# dt = DateTime.parse("2010-10-30")
# md = MyDate.new(10,31,2010)
#
# Time.parse("12:00", d) #=> 2010-10-28 12:00:00 -0500
# Time.parse("12:00", t) #=> 2010-10-29 12:00:00 -0500
# Time.parse("12:00", dt) #=> 2010-10-30 12:00:00 -0500
# Time.parse("12:00", md) #=> 2010-10-31 12:00:00 -0500
#
# If a block is given, the year described in +date+ is converted
# by the block. This is specifically designed for handling two
# digit years. For example, if you wanted to treat all two digit
# years prior to 70 as the year 2000+ you could write this:
#
# require 'time'
#
# Time.parse("01-10-31") {|year| year + (year < 70 ? 2000 : 1900)}
# #=> 2001-10-31 00:00:00 -0500
# Time.parse("70-10-31") {|year| year + (year < 70 ? 2000 : 1900)}
# #=> 1970-10-31 00:00:00 -0500
#
# If the upper components of the given time are broken or missing, they are
# supplied with those of +now+. For the lower components, the minimum
# values (1 or 0) are assumed if broken or missing. For example:
#
# require 'time'
#
# # Suppose it is "Thu Nov 29 14:33:20 2001" now and
# # your time zone is EST which is GMT-5.
# now = Time.parse("Thu Nov 29 14:33:20 2001")
# Time.parse("16:30", now) #=> 2001-11-29 16:30:00 -0500
# Time.parse("7/23", now) #=> 2001-07-23 00:00:00 -0500
# Time.parse("Aug 31", now) #=> 2001-08-31 00:00:00 -0500
# Time.parse("Aug 2000", now) #=> 2000-08-01 00:00:00 -0500
#
# Since there are numerous conflicts among locally defined time zone
# abbreviations all over the world, this method is not intended to
# understand all of them. For example, the abbreviation "CST" is
# used variously as:
#
# -06:00 in America/Chicago,
# -05:00 in America/Havana,
# +08:00 in Asia/Harbin,
# +09:30 in Australia/Darwin,
# +10:30 in Australia/Adelaide,
# etc.
#
# Based on this fact, this method only understands the time zone
# abbreviations described in RFC 822 and the system time zone, in the
# order named. (i.e. a definition in RFC 822 overrides the system
# time zone definition.) The system time zone is taken from
# Time.local(year, 1, 1).zone and
# Time.local(year, 7, 1).zone.
# If the extracted time zone abbreviation does not match any of them,
# it is ignored and the given time is regarded as a local time.
#
# ArgumentError is raised if Date._parse cannot extract information from
# +date+ or if the Time class cannot represent specified date.
#
# This method can be used as a fail-safe for other parsing methods as:
#
# Time.rfc2822(date) rescue Time.parse(date)
# Time.httpdate(date) rescue Time.parse(date)
# Time.xmlschema(date) rescue Time.parse(date)
#
# A failure of Time.parse should be checked, though.
#
# You must require 'time' to use this method.
#
def self.parse: (String date, ?_TimeLike now) ?{ (Integer) -> Integer } -> Time
#
# Works similar to +parse+ except that instead of using a
# heuristic to detect the format of the input string, you provide
# a second argument that describes the format of the string.
#
# If a block is given, the year described in +date+ is converted by the
# block. For example:
#
# Time.strptime(...) {|y| y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}
#
# Below is a list of the formatting options:
#
# %a :: The abbreviated weekday name ("Sun")
# %A :: The full weekday name ("Sunday")
# %b :: The abbreviated month name ("Jan")
# %B :: The full month name ("January")
# %c :: The preferred local date and time representation
# %C :: Century (20 in 2009)
# %d :: Day of the month (01..31)
# %D :: Date (%m/%d/%y)
# %e :: Day of the month, blank-padded ( 1..31)
# %F :: Equivalent to %Y-%m-%d (the ISO 8601 date format)
# %g :: The last two digits of the commercial year
# %G :: The week-based year according to ISO-8601 (week 1 starts on Monday
# and includes January 4)
# %h :: Equivalent to %b
# %H :: Hour of the day, 24-hour clock (00..23)
# %I :: Hour of the day, 12-hour clock (01..12)
# %j :: Day of the year (001..366)
# %k :: hour, 24-hour clock, blank-padded ( 0..23)
# %l :: hour, 12-hour clock, blank-padded ( 0..12)
# %L :: Millisecond of the second (000..999)
# %m :: Month of the year (01..12)
# %M :: Minute of the hour (00..59)
# %n :: Newline (\n)
# %N :: Fractional seconds digits
# %p :: Meridian indicator ("AM" or "PM")
# %P :: Meridian indicator ("am" or "pm")
# %r :: time, 12-hour (same as %I:%M:%S %p)
# %R :: time, 24-hour (%H:%M)
# %s :: Number of seconds since 1970-01-01 00:00:00 UTC.
# %S :: Second of the minute (00..60)
# %t :: Tab character (\t)
# %T :: time, 24-hour (%H:%M:%S)
# %u :: Day of the week as a decimal, Monday being 1. (1..7)
# %U :: Week number of the current year, starting with the first Sunday as
# the first day of the first week (00..53)
# %v :: VMS date (%e-%b-%Y)
# %V :: Week number of year according to ISO 8601 (01..53)
# %W :: Week number of the current year, starting with the first Monday
# as the first day of the first week (00..53)
# %w :: Day of the week (Sunday is 0, 0..6)
# %x :: Preferred representation for the date alone, no time
# %X :: Preferred representation for the time alone, no date
# %y :: Year without a century (00..99)
# %Y :: Year which may include century, if provided
# %z :: Time zone as hour offset from UTC (e.g. +0900)
# %Z :: Time zone name
# %% :: Literal "%" character
# %+ :: date(1) (%a %b %e %H:%M:%S %Z %Y)
#
# require 'time'
#
# Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500
#
# You must require 'time' to use this method.
#
def self.strptime: (String date, String format, ?_TimeLike now) ?{ (Integer) -> Integer } -> Time
#
# Parses +date+ as date-time defined by RFC 2822 and converts it to a Time
# object. The format is identical to the date format defined by RFC 822 and
# updated by RFC 1123.
#
# ArgumentError is raised if +date+ is not compliant with RFC 2822
# or if the Time class cannot represent specified date.
#
# See #rfc2822 for more information on this format.
#
# require 'time'
#
# Time.rfc2822("Wed, 05 Oct 2011 22:26:12 -0400")
# #=> 2010-10-05 22:26:12 -0400
#
# You must require 'time' to use this method.
#
def self.rfc2822: (String date) -> Time
alias self.rfc822 self.rfc2822
#
# Parses +date+ as an HTTP-date defined by RFC 2616 and converts it to a
# Time object.
#
# ArgumentError is raised if +date+ is not compliant with RFC 2616 or if
# the Time class cannot represent specified date.
#
# See #httpdate for more information on this format.
#
# require 'time'
#
# Time.httpdate("Thu, 06 Oct 2011 02:26:12 GMT")
# #=> 2011-10-06 02:26:12 UTC
#
# You must require 'time' to use this method.
#
def self.httpdate: (String date) -> Time
#
# Parses +date+ as a dateTime defined by the XML Schema and converts it to
# a Time object. The format is a restricted version of the format defined
# by ISO 8601.
#
# ArgumentError is raised if +date+ is not compliant with the format or if
# the Time class cannot represent specified date.
#
# See #xmlschema for more information on this format.
#
# require 'time'
#
# Time.xmlschema("2011-10-05T22:26:12-04:00")
# #=> 2011-10-05 22:26:12-04:00
#
# You must require 'time' to use this method.
#
def self.xmlschema: (String date) -> Time
alias self.iso8601 self.xmlschema
#
# Returns a string which represents the time as date-time defined by RFC 2822:
#
# day-of-week, DD month-name CCYY hh:mm:ss zone
#
# where zone is [+-]hhmm.
#
# If +self+ is a UTC time, -0000 is used as zone.
#
# require 'time'
#
# t = Time.now
# t.rfc2822 # => "Wed, 05 Oct 2011 22:26:12 -0400"
#
# You must require 'time' to use this method.
#
def rfc2822: () -> String
alias rfc822 rfc2822
#
# Returns a string which represents the time as RFC 1123 date of HTTP-date
# defined by RFC 2616:
#
# day-of-week, DD month-name CCYY hh:mm:ss GMT
#
# Note that the result is always UTC (GMT).
#
# require 'time'
#
# t = Time.now
# t.httpdate # => "Thu, 06 Oct 2011 02:26:12 GMT"
#
# You must require 'time' to use this method.
#
def httpdate: () -> String
#
# Returns a string which represents the time as a dateTime defined by XML
# Schema:
#
# CCYY-MM-DDThh:mm:ssTZD
# CCYY-MM-DDThh:mm:ss.sssTZD
#
# where TZD is Z or [+-]hh:mm.
#
# If self is a UTC time, Z is used as TZD. [+-]hh:mm is used otherwise.
#
# +fractional_digits+ specifies a number of digits to use for fractional
# seconds. Its default value is 0.
#
# require 'time'
#
# t = Time.now
# t.iso8601 # => "2011-10-05T22:26:12-04:00"
#
# You must require 'time' to use this method.
#
def xmlschema: (?Integer fraction_digits) -> String
alias iso8601 xmlschema
end