// // Model // package libsvm; public class Model implements java.io.Serializable { public Parameter param; // parameter public int nr_class; // number of classes, = 2 in regression/one class svm public int l; // total #SV public Node[][] SV; // SVs (SV[l]) public double[][] sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) public double[] rho; // constants in decision functions (rho[k*(k-1)/2]) public double[] w_2; // hyperplane squared norms for each binary SVM (PCL, taken from Gabor Melis) public double[] probA; // pariwise probability information public double[] probB; public int[] sv_indices; // sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set // for classification only public int[] label; // label of each class (label[k]) public int[] nSV; // number of SVs for each class (nSV[k]) // nSV[0] + nSV[1] + ... + nSV[k-1] = l };