false
M3AAWG
781 Beach Street, Suite 302
■
San Francisco, California 94109 U.S.A.
■
www.m3aawg.org
M3AAWG
As with all M3AAWG documents that we publish, please check the M3AAWG website (www.m3aawg.org) for updates to this paper.
©
copyright by the
(
)
M3AAWG
M3AAWG Companion Document:
:
.0
The direct URL to this paper is: www.m3aawg.org/dns-crypto-recipes
This document is intended to accompany and complement the companion document, “M3 AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic”
(www.m3aawg.org/dns-crypto-tutorial).
This document was produced by the M3 AAWG Data and Identity Protection Committee.
<!--
DEBUG
contents=
-->
bold
bold
false
false
true
false
true
true
false
-
•
14pt
12pt
14pt
14pt
12pt
fo:inline
fo:block
bold
8pt
10pt
0pt
6pt
12pt
6pt
12pt
8pt
always
H
fo:inline
fo:inline
fo:block
justify
0mm
6pt
,
7mm
18pt
-0.5mm
,
iVBORw0KGgoAAAANSUhEUgAAAjUAAAA8CAYAAACehUt5AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAA99pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMy1jMDExIDY2LjE0NTY2MSwgMjAxMi8wMi8wNi0xNDo1NjoyNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ1dWlkOmZhZjViZGQ1LWJhM2QtMTFkYS1hZDMxLWQzM2Q3NTE4MmYxYiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo1QjFGQUNFRDVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo1QjFGQUNFQzVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ1M2IChXaW5kb3dzKSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkMwOEQ1MzE4OTE1NUU0MTE4ODdFRjlCOTFBMkJDOUNFIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjg1QjAyNUI5RTdEQkUxMTFBMzhBOEE4OTAwQjRGMkQxIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5wYXJ0aWN1bGFyPC9yZGY6bGk+IDwvcmRmOlNlcT4gPC9kYzpjcmVhdG9yPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PgKyUlQAADIMSURBVHja7F0HmBZF0m6QIOqJgKdnBgMqwrl6xhP3QM9w5gDqmWBVQFBEQO/0Pw/Md+aEIHHF7ClGRMQEK+YEioAYQFFBUQRBQQT3r/ebd9jZ2e6e8M23ya7nab5lpqen01S9XV1V3WBxUdtyVb/pspbT5lyqHDlyVCMkPGZL+Wkk6XP5Fn91PeLIkaNCUHl5eY7R5P4Gw6mn7VzihtqRoxqlqZK2kdTCfY+OHDkqJPmg5gdZQbV23eHIkSNHjhw5qqvU0HWBI0eOHDly5MiBGkeOHDly5MiRo1pCjepz4xYXtd1cfk6S1FlSB0mbEMh9I+kVSWNbTpvztJsGjhw5cuTIUX0GNaVlLeXfowx3Z6uS4tdqpMalZe3k370Md5+Qei0moOktP7dIaqzJt5WkE5Ek34Pye7qAm1X5VOuOVz9eL9cvSm0YuAwD7H3O3nf7D+vi5JA2vSg/u4UunyntGZeyvFbyc6Th9kIpd2I1tOl38nO84fYsqcPr1VCHXTX96tPLUoePMn7f1vLzZ0l7S9pOUhtJAPxNJa3PbD8rz4h3kaR5kj6W9K6kN6Q+sx2rdOTIUd0GNUqBEZYa7q0QcPFnARDTqhnQbCb/PidpM0MOCIrF/PsHA6AJE8DNfEkX5lm70wmWwnS+pN51ENBAAHbS3LpA0riUxS6VdLVh/FbIOzcXAVpo75jukm413JsjddhJ6lDoMAdDJHXUXC8n4Mhi/HaSn1MkdZW0Y4xHAHA2ZWofKusr+XlW0iP4lf5Z4VinI0eOaiOltalpJukxARm/r0ZA04RMdbOYT4wnsBkp6WBJqCvK2DVX98rUe3FR22Z5CJAG8tPXcLub3N+4Ds6Nfobr+0h7/pymQBGGq+VntGVOnVYN7epluddW0l8KDBbbGQAN6Gnpo8/yLP9ASdB4zZJ0SUxAE0XQ6nST9Likb6T8MZI6ct47cuTIUZ0HNSDEnfifgI3G1VTX2yFQ42ZuOW0OtAJt5LenpGclfSvpF0nvyfUuylOv+wQVfOs86nagpHYWYX12XZoUIqw2Yx+ZaEAexY+iRkJHvQvcrv3lZ5eIbIXWqvW0VTGPtu0s6SnlaTIPKWD9N5BUIukl5Wm2/iVpC8dKHTlyVNdBDaiTpJsKXsvSsj7y71lJHxMAs9hwfY38zAxdzkel3i/i/rnC+JvUoXmB/raB1WOlPam2SaiJMNnO7EzgUSiKAy7Rtk0KBKrWVd42pY6wBTohRZkNJA2UP7EVfFg1z5PtJV0p6SrHSh05clQfQA3oHAEdZxYQ0EDI3ZxlkYuL2iKy6X6BS58K0JmXUlDB8PLwiGywUzilLkwIaQ9sK3rFmDf983jNiJSajHzahS3ALjGyNqYmohAE+5YWhnsjBfCtSdim5vID773rlbe16siRI0e/acrKpXuYgI+ZqqT41YwBDQxvH1bxDH7jgBl4KGGr6L+SWvEyzqLpl0ex50qKY1swQITQndVghJovwQU+jq3UGdKeQSkNe2Hv9KUk3bZFVym3n5S7OON2nZFA8PeSOlwndcj6nCITYLPZGpkADb4NaHbax3xkpaTnlXdkwXQAeeV5Ov3M76sJwTfKhR0ObM/2UdnY5MT93mFr5GtkrxN+8kHM5y5gP/wkz/RxbL0GqLRsqPy7Xm5ulRTfFPOZP6qKrexR8txU15F5jcF58u/ukn5UcHwpKf4pxjPr5741b+ymyjOjHKipWN0+Ih20h3TKlxkN0LrKMwzOaytAgAzi07xE4LFh6DaYeu+W0+aMT7n6h3twXC0VmO5fledFUpvp/Jj58DH04AeRiGAwLH2Hj2ew5jY0RdiiyUw7J+9qqJJpgNpwrCZlWAebgfAT0idfJShrS4KTrWNkBzC4UdJD8o5lEXkRv+l9FdgGk3f9QXmayOMkHZTVAsNA2M7qxr/3Fx6wpx+iwcInzgzMQdjROVBTM3SypOYck8UybmMjxg2LyieUZ5sJmsw57Sg9HSDpaP7dQvr4FBmHcssYQCbCw7lr4GqdBzVZRhQG83uUYCQLwhbFHhmUsw4/tjCgAQP8t6Qn8yi7u6TfJcg/sDZPBtqzFCV4pJ88k1bIQTNh0oT0zNizBgBlu4TPZG0wbANVwxKMEbRoL8YANABJ2PLsIGBmTAxAYwKgiB80WhKADbygoBX5pBqm47bKc0RYx8KU903Sd46qjUbI2OxjGTcsph8KABpH2dPfJf0zIs/FIUBTLyjrYxL2lDQ8Ay0NtAVZuffCABjqdgTAC676AHTgbfLB4qK2f0y5+j834WOHyHPta/F86JswP7aPTkgpLG2GsTurbF2rbQBlteH6kYibkxFYtBkIAyA8H7McXxhsH5EVcYTaSx/fl+V2p5T1raQblOf6jnEvdJwqbBXfaOARW+QWUYXVHDlKR024wDV9PxjTzq6bCk5XyRgcYfh+cP3K+tjoQpz9dLp0WHoj0tIyqNCuz6oyLafN+VBSkaSdJLWiwLwzkAUC4lkBNpsmLPpQMncd2aITn18bJwKjzh6Xoj212mCYwMQUxXi2BYRDQ5CVAbzNQPiOBMDjqhhgb7CU10XS94WaK7A1kgRwtTtXhIXQ3PhRlc8TnnBGiEesS0CzKUHpPCe/ag1hLmA+Q3P/WBXNvTeWfQN5HWVP+Pa/pny/T/p8p9AY7JS77plkfKby8/ytddQoj4nb0sKor5eOe0+VFD+fqNTSstZciZpUzsvIwDrkAXIgyEoExPyQY5gewW4HBmv/TFDUeZZ7vSiwdavI0xDbQ4TC17VsLvSx9PulynOH1m15/Ena00naMznFO6GpgcZGF4n5eHgsQTuQZ7t6Wto1nFqScwz3e0gdrk7qlZQAoK0KAWwbOIMW9IKIbOdKXW+vrglDMPZAgYrvxfHZQXmOCLMCjgj4tvbk3wOo0Wmt4SfmBURJ8c2BfNhyPUbSRpyPD8v9zwL3mxKYImI55gKOiHlS8vyieSd4IhwPHpf770bwO9ilYWv0T8rbHodhJ+JoTapkS1RathvBLK7P5LXeOcFVUvyIpfztCOinaOtSWrY3y/0DgYinNSwpzudYF9jFlFILgDGCjcapfF9wuxC2W9j+iLZnLC07PcdLS4pHG+4juCps1u6VPIsC17FViy3YOXJ9guFZ1G3jXL1Kin/W3Pf7/jm5P4PXYHMH26+xcm2u5hnMl6B2+CcuoGCI+6thjPRytqQ4jXnED1xsTFGeecQTubEuKf5efjdSni3T7whmMO/Bu5tZ+r8h+2A/zpUVXHQ8pbWh9bYeg9uPmMuYt29XsvHRz2t8s4vk//ca6uKPqY6+wLebFtR8QSH4tEHb0zAHTjzD4U9jApr1lBfpt6UlFybgGfmAmgDdGgImB8UFNSJg4BFiCnD2YW6ye0Zbui20JhSig2qRlgYTuofh9koKF3zwNxjyDOCHkVQorpF3I+Lz5YZ+6mZ5Z5x22bQt+DDhjbZE8oER64x4AbYOU3nYXUUYCD8UB7Rxq/MOZdesXladgKaaVpswenydDPjRHD/xtr387wpC5Ta5fqChDJsXzs3kO/2YL2jD9R+53l7KnkOQ8oKqamv2OAVCmMCfBpOpHxohqK+ltilMv8j9EfJ+f3v7L6xjiaqIr/UfhS300rJuku8uw1s68DloU98NvBsBKAEQ9jbU7R2FKOwlxd+lHDschbIrgeApUt40agYe4Xf9Pfsu2tC9tGxTAqOG8vdzlcBmBZ1MXjFZec4fQWGKtq+f264Mg5bSMtj03MWxR1vv1pR9jQY0g9+dSwGvi33VzDD3PpB3HiP1+FgzRjp6PDXvwQLAA76juDB4QP4P8HQ//w86K3fUUWmZrf/35MKrnWGegi/9Q8pZGbh+qNI7gbyUq0NJ8VLLvMb/p+cAqp62sPQXQNzD6befSoon5Rpjpha5QSkt2yDGxPWtsHe1MW155xMZMs0fQ/9PYvBrcwG/nStYmzDuTSBRW+g0C5i8n+7VI7kC0NER0p62Kd89mqtfrYYjT4NhfMRbWtq1JLDyT6plyVdL42uK4hDi6+xuuT8+933UNyopnsVVWTmFP7RqvqfTWypeMMU51LCEk7/qu45M9E9csR9MALBeQIAVUVuJSNswYL5I6cIDeCtaH4gckgNGen43iAsfaHIHsswNKeRP4HjGPYpklJT319h96gmp1wloRvIX70ZfdCLf2iYhPwyPWzkF1fQAMHiRIACaipNiL3a9MW5MbWu/hPVYQ6HeSukNYs8KgNlemr7alpq0CVLWfF5DX3Vnjm7yf9sROOjnNvx28a3vosznKQ7XzNH+eX4/4K1D+L+DOR4+0L5e7t8XMVf+ojzPYQCa/ynPC3IHArE+VG5gK/FZg4PQALbjEH67+6vs7Hie1PRXLhxEozw77QaqkEzqoPY5JFxadrzVtcw7TPKEiAZkzbRPDP0/1kfGgGcmo8/lZFbQQkyXvM8T5YdpY5YxXNUOshkI38b2LKNWRefB1YAfYGKPIbgyS7njVYUrYpAAlDpzpZyGbEEEg14zD3HlrgN2h0v9tklzJlOEgfAHUuZLMcpA314codE4ow7EP0rLY54U/vFvMkMfOMP1/LjQ6lAZNXLmg3d3ocC8X/K8w2tg0FMCoKWIgvgqybN6rZAuLdO5vh7FFf0bkvYiUw/bA3UmL4N32n5S5rzAXWyvz1eelvsPMdq2gAJ7XC7GT0nx+xFCqhm1Jevn5mVJ8d2hd0/JpdKyy3Kr8PzG7cecVkKpN8nv/LG7mAviOACsCUHNVwS2PXJ1q1jpx100DSYvuCdQdmPlaacXEMQeJtc6hPrQBz3DQpq4DQJjDOF+ueHdKzm+86g1OTSntcW2I/qnMi0s0AHR/SmHAVh3WjvHPWBu63u08UHlhdg4U+o2JpRjhuS5h7IZ4OcKVfVQ6Llr21Rahu038NB9M2rXYm1/dS/PxFC4B1dNJjpWea7Tps47lKpUE2E759QIUFS1xUVth0kaKmk/SY0D15tJOk9Vja/yYMyizyRT0NFdIlyC2gybtqZ/bTgQUOrQWZkDuL0i7Qnuxd9i0arg4M5WKasxImKllqZd2yrzFuHb0q63AsAKwvFOQ94GKsURHSSbgXBcQLu3srvZXyL1X6TqN2E742H+/UuuX/2Vc3702VrhFfTUKSleJWn5WsbsbfsNCglt3dZMv7WaCJ9vVQUn/1r7zsqAJgwKFsbUQp1OTcsEeoTZqBs1l2NCgCb87mUxAWMUsJnHb8AHg/9TyeJadaV2B/zhVoKJngnrAED0OMFEuxAA9be2/G3b3gG51IgA5nPlH+viaeKwAPyBz3+f08zFC2PSQFXY9q2uxkUB3tUlMNfnUlMWZSd4OvtnrAbQVMwTb4yW5frFvivj88GC86qGGXTaCuV5zdgMXy+TBh+lATTbK2+Pz1QPdBb2IH9ICGjWYWdjksJeYrlc+0gSGM1SCufGITXh2BiCsmGEViNs04CPwRQVdUdV/Wf16MjmjTUkpFWZbwF/zVT62C4TyTx0dEzKs5h6KnOk52EJgdWZKePxmBgwDAfvilnGqZZ7X6h6ECwrBo/BgqY7V8f95P9lCZ5uljMErpx2ZLlzVYXNwfs5zxxPcAUJ+/ff5hZmpWVPS9rBsDjrwNXweJZ7I3lM30CeplzVLlDm88+S9g2+x38SrDzF7RETHRTQXlTX2E0m2AOPLUm4OO1HADCCCdqN81Icojxc8z32IQAdybGYRxDqC+YjKNSHB4x7sf2ybW4BVFIMeQd7EmzbmcKPrJubL6Vlf+Z7tsy9S2eQDPBWdZ7+IaMx+I4gbD7laZxo7Qfwd0xE2YsIGpuqqraD7aUNB0nqQbkB2XtJRjOrpaa/ts4G1HgNQ2cdH6GyvLcSUi4tw54tDIM3sjL0kuLZKWqELbGg1gBqTACotqqqRxJUoUfwkMsogo1Ga8O9F0XozwyBAHzAtsi4NRqMj4dSmizv8dGO01y/0VJkqoM7eRyBSXPRWFXsYcdtVxMVVvtX0FIC6XAdAHgnG57ZjEwhSR1sBsIPyPviqtCPsb1GylmlfgsEdX1JMTw4kgbbwzf/big9GNIEDqa2A8K+jAakKgB8IJSwjQKtMtTu/6AdYJB88DKUv3cTDJ1NLydFAQgNwCdVhDscJbBdUzk1jtk31xKowybxIctzvn3ZJxpQ1jH07q0zHLuhkvaJFba/oj4wtIb9zyPy3AJJSwhA0YaksbGeY5u7s5+3p9B+Mie7PNAC0AGZdHIAAK0OCfW+oUXREMq8AZr5ANqb2rSXyY+eU+Zz5Xpp5unZGY4BvJG3zv3GIx9QxTHL8OdT2Oj9CsrXEVzEwxxjeUYtOlLTX5dnB2q8TntZ2YPRAQE/kfMm8CYAVqq7WLU7KQ2DBaC8xRXRGKJTnWAbT4FxqOSP6zZsM1S7zXAdzO0bw73OIvyKVM2R7dyq4TqBKdfeVt7eu442DTCFpDRGmdWySQ2Gj1fm86vGSht+SqDBCTKdLLQ0QcEXBYzAfG1bCvcpR1GE7Yf+oXRdgG+tkXQ5AQFsnPbLgVsvjL+fB+6r+/J7wTdxjQpuqXt5sVrHCrwd3VIxXz5Snp2WD8r9eCC6LUloIx8NpfUTtLMvedrBlgXC8rWr3Kp0ZejdB9TwuPmeqStz/en1qa8xGZBQNv1KwdqcgKi35nsfQ4DSm6D20Fw/+NuAnscYNF0Lc/e8+pxAoQ9blcMMwn4wtVR+/5u0JM9o5unEGux/f640j6U18WiZRiaWENDhvMXOOfDhaa7ypTc1/ZXjh40y7YaS4hGM+WDahoBPPuJavBqxAs3bMFiASllu1aVy21HNKeR8d8Kv5X6iwwpFwHRQ5iiY85XB9U4E6M/y7G1ErSZtzWnVPWOlTgCZJlsRX+VrouuVOQjcQCl7bFLDVYTjl+cAYo8zzJsDudKJQzYAYrNlgeZwkQEQ/RUgQ+r5cYy+tRkIv0NgGIdsRnUfSjlzHWaJpEWVYtKYeddMGvGOIgjpQUZcAX6wvVxa9iyF1MXy9y00WkVe365Cp8nsL3mH5bYBSss+J/DZJuSejIXPsQGAsUtC3rtGyjyR2sYS+Xue8mLeBGkawQoE9qzQPWwLbMwV8Bk1OmKefVMX/u90zbe0e26sSopfTFDqnexXhNNoQzDybKD/FkqZ+P5htnAHF3vDNVoaaDBuMvDxp0LXvsgB5tKyq7m4PYnzQ7f4fy3WPK0+guH8IZwPH1jGqpGq0Pa/Gbr7grTpsUBe8PdXlGcj1ynP+s3U9ldGhsJhOt8HEwY6WOl92Ncya5XCMDgC4CyV9LGkmZIWJAU0oUmtXeHjkEabnFNevBcdnShCcIsamLS+gaGOHpX22A4mncBx0pF/cGcasgGOWPY63PYxAa4p4S3CELDCKtxkb9BAxTdStBkID03QHztZ7r3i8ErewnMrboMHgYuvgenAPDuGwMMcruoBYrYlU+/DxVJbCsxgGkVQ7i/iRnMu3VrJfgdbMxAAnhBIF3DS296BLchcLgrDi6VSajsurrK9hBOyvXe/XwtGBt964wAACaaDAiAiSd8ANMLYHLGOWuV4cjgQnsenFUHfHOV7XXqxitCXszX1aUONSmfJt7vh3aupsZiWa1MSF/yaI9iY4nv4Z5VvoDJdqjyTjAkxjPd9kL1VISuePaiB54DH1D9P8XQqw+Bq0Gq0UmaDzVUqwliTAdbuNNxurJKfIZVve8BUbRGRh0S051dlD2w2IGXVniND1tFRPDE6Hy1NHHsM7K2bAHX3mDZDPS3zO0kE3h0s92Y5VJI3AWw8QxsLnzqvXWV7dLXcv3CtnYrn6eKrz7EVcTSZ9OjcNhU8foLJ8+z8NfBNQMuJ/X/YaD3GWChBoAUNaj4xYiC8/6a8bY7jQvdmcJUMTSQCof0t9O6G1NbUJNBsym/4mxxfDfdnSTF4BGwzDq8S/j+aRgR4ti5ezIsEM17eioU1NFfr5fhi1frMC2j0BlrGZSX5QnmOx8SJ31aT5EWVhscfbF6nSn3/TgDvj9MWksAr/8WxOjdiXNcN9NO7hax6owJ1yDfSiGOV53mUJMhcWsNgLS0uatuJaq6JLafNeS2PonpY2vFATJfam/ix6mxDzhZheZWUs7yapizUiib0/Z7UI453CWyirjQwwUNxcKeUMyNJpQCW5LkRSu/i77tYXm0Ba2A83Qy38eE9GqMOn0o5UEsfrLkNYQB7nfsjNEUmA2Fsy/2YoEtsXl/zHCaJRe24FRMm2EBgLPbJCTIvii4IQfiWBAAw7GCu5Yp1JrUxm1LgLqBtRblRA4cgc6VliA3ThaHqX2dYf7g3H5nTrJSWzSBAakUNUWOWmU5bDYFUWnY0FwlNQ3cHcQV+ifLcwL8iQF5XeUHWfA3jmhoar5P4nV3OBbKOAAwPJIgIRkIHUAvXG6H8/ThqU6hteUuufavpt/JcJGfvjLVSCmN40vblguQuQ38jtg/sOE+QX3iiLTfke1PuwzW9H/lYcGEJu6HuoSewfdWxBoENAD3mIEwn7lPe6etzKQv9hcAHOZ6oOy7Cy38z5/Mm5OFfqOjI/R3kuSWa6xhHfwcB31On0H0oQ/7YsIAdAiaR5EDArCMGKwIaP2R5Wq2Gr142UazQ9CLMsAIwhbwGGu5ejdP1vAzas0LZt1LSHtzpG+zp6Cy61dsYosmwbXQCT6F8DIZ7xlgpxiWbkd5Pqv7RQuUHgEvmJTGDz0wNXX9ceVul0zRpRU7IeLwBqnZo4LB6RkCxvQIxZM6kUEM0VnjBwRYDZ3CdTdsPCNFbDEzdp2tYv2Lyxm8plA/lfF9JrVFD8ghodVoHgsx9weeDsWumKtsp6dhO8rTLUwJaJ09wlxRfqrytTaycYSMGjyIYe77Nax1VMFBdPJoaAA1xaUlgvP227cb/32F57hmCwi2pAZjNZ97WjPPcSm33AJGNxwHM3Bpwe96VC4irGJfFLL88Lydo+lazPrrxuYjzsgM1TQv4/8maus9MOAb+d/BaZmNXUvwfzpVr+Q00I3iAxhnnSxVpzgqbx/Jm8m+UO44yYRfJ/4llXk9RnsG+7ptdyvQ4AXv4fm7rtMHiorYYaNicbBRSFxVZ1EQ4IK1TTHUiPuh/ROR6MqfGjWNH4xlzHW24u1swyqC07VKCmv7SvlRGWCJEu/ID0tGbIij3SlBWsTJ7DmGg23Jrp2DE4wxmGzRGYDJbxtUmMH7MZ6rCSDJI8ATZJs3BnVIu+rurScskZU4yPIc4JntqbmFetYkbFZhA9nMKMR3tLGXN1jyHfvhK6e1ppsoz+yfshw+U/swV0EFS3nMZzgtfq5mWXpP6TDRoTMHY4FHSQr7DJU555MiRo0JQeXl5gbafKtP/QSWkzIe7ZW4YXNu0GgHtRpkID6gp99Dc9o0JHylwe/oqsxv3nUm2RyTvN9IerOh0XlRQe6c9uHO4BdRAazZJI5R3NwAa0FNJjjmA0TePhDDV/WyDJiqLCMJBssV9ynpPvpOyG/BHEQJaTlSOHDlyVIPUsOBv8DwKoKb6SHO3VhoGBwQlVKGmPU3Y0TyQoljb0QkDCtye4GFsOm1GmlOebcH40h7cCa+DTwz3cHjm5gagYWx6ijrA+NukNTudWpkwmbaeENHzoRR1sKm7WylHjhw5clTNoMYDNlA5H6Vh0pkaBheAbHYhoxCDJkWZcCs0eYbtJ8JyzwK25wzLCn9inBgsGq0GjAwnGG7DiPi0FGUCYJnsT2C4d6YGrJkOVYWG5ukUdZhvaRe0MSeG6mAzEL4z5VyxhTPf1rEvR44cOaoJUOMBm9kUPP42UyEMg7PUasBe5CTD7TUpV/+K8WxutWS5oEDtiTq3akgexVu1TykP7oQBpcmwN2wwDOC0niHviDzslJIYDNsMhO9I+X4byPzjb4VJLS5qu62kXetRexpLKpK0ZT0dr60ltZa0QUS+dZlv6xhlbsq8LZ3Yznt81pO0h6S/STpYUofgoc8O1CQDNjAIPo4C4bJa3jeooykmyZMiKD/Po2zYa5i23I4Xgb1NAdpzuGV1D4+O1PYQ0hfYLjJ5YqQ6uJOxfcYZboMJBm20TFtPsEnJ58BH20Gb+zLKdFQE4efTaMBINi3mfhGeYPWGASu44Mr8kr8715Nm4SgROGE8L22qj2MIEA+vo2sj8l3IfJ9JP+xomQOwz/uAeTs5WJL6W9pHEmQwNMDw/IMmGp5kCIq3WO49LOkoSY3qcjur/4PyomaOqMWGwf6BiLYItrflU74IuR8IbHSE7ZXzCtAs27lVt2fgdVUIW6ERUZoSGSts+bQ35HkExsx5jNOvlnFSgTkCoG4yEB6WR5/aogbjfVnGsIAb6C0RaXwNfI6nBvp2oKof5H/f8EQ8op6CmtzYmbQ1ch18rmeMhUluoac8GzK4Pz+hHCUFM+tIgib+Vc43gMRZXLS9wIXbBuznxzPmK9VOjdyQawnnjpjceeF7/2IG74CQOJ8gJkw9RFhfRvCTBUjDOTIHGm4j3kxpBq/ByceIcaE78uEAHNwp7ZmWsEy4v88h8w8TDIa3Uva4MXdk0C5oegYbvpVTpQ4XKvPW08I8mTDmGjRWpiivCDRYlsUcoTv2xIh5dEx1CmFhxA1CYPxwubZTy2lzZtdVxiL1RzTiYDj9C+qhoMYZSIhBgu21kw2Lk8NUxanhubksffN/MrYrNHn972uU3F/txFNiwla+r0lGuIx/4dig0LwEL4VDz7l1vbEN3XhbV1ImrUbeWiYaopri3yBM+lkZtsdmS3Ov1OX7DNrzC4GaiQamKNNmMIy5i8iUJxjuz5LnJ2fQLhswwThdqsxnTY1iv6R9N9o/zpLl5JhHR9RVwuGLMMBGoMHp9URb4zsfvMrf/UWg7FmfBk0E5hpVse1rWnT4Wk6chQXvwCrG9xS2O/L7itKaOtKD6JMDgOYyGZsTw4CGYzZfErYLcTTLu3W5zU5TU3U1igijextuw3vr7gxfdyPRsY76SV1ujTgoM057YFhn80AakmF7RlKrsb7mHg7uvCjioEwd3am8sOVNNffOKbCWJljWcYZ7JsPuX1V+9jw+3WMRDLDlQSydPvV8cYEQ7ZO4CMCWBlaa3xiYOPpjrty/23AfAhJHuFwueWBHAE1b1IGyQyAIJO+xFLAXGzQKUQJmy8A88kPl/5VA7STDM3tR2wFaQwDwrLz/zVA+RH7Fob2jNWVszxX4fXL/DV7D3MGWDzRHMMjHNsQ9cn8V7yP/9poqrS0jBi/A4aC7S1l/kmfeDtQHNoO+TRwWQogSO4D1udOgpZkAwWvoo3bsPwAgaL6xnTJe8r9gGX8QFhzzJD0Unk80SMZcelTuTQlc350g4T25PobXELYC/T9Frj3Ka7C3g5fmULk2x1BvzL0Vcn+I5l4bgjyU04yaLxzfMkny/xxzvkHTeWWg/y6NAUhR9s8aYOQHmUX0a0TufcT2DcgzCDQKze42nLfog4flmemGb3axoR/wbV4YHAfNN/st6zPTaWqSa2ngmrssqxdJWTCANEUYhjHs8Rm8Bhofk2fQS1KH6Rm2Z4lFkKc6uFPKTBPjBSv7uzKcE4jc+0nCZyYkCfhnIYRet23bnU0gXt9WmGDqR/K/iJ/0CAXQuhFgFmEL7pLnTcEbdyOg8E+o70zmi9SF97oHriH5239/4f2mKZvVh0L3LYIS3w6tCwW9jtrxnRDaaBME0xvYqtFoPo40lLEly2jHvgXff4aLKgT93JMak+ACqwvre0wobR2nodI+RNYeH9LKqID2BgJ3quSDgPTtzvaGV1hgDqCf/bPchmnmSCNJAEUzCKD2ZBvBZ2CEPUnSxobxx2GeCDMCT9QPAbxC+TZkvt1CWiP029GqcgDQpswb1Nhux2tPy3O/N3TTKeznSkCEQh5Baa8gUNuYYBga4wUJ5hsAWBv+fXkenyPOKoO2vxPnCBZa72r6FvVvIQnjXsb2t2c9cPAljP2HS2qi+Wa7GN79+/A4sN/8uXk8v4npUm4Xp6mpqtXY3NK5oKERz9uOcEhDD0iZDxSwyftL+Um30nDcwDzL/ZvJVHS2Qr1SHtyJLahTk/QbAVZWYK2cB21ek1C7k9W7r7IAuwacJ7tL3sX1bHGBtr0igm8aGeZNXNn3kb//G6EtuVvyLJA8UyOE72EBhtxaeR42N8dZ1SYEaQBjPQIgTVFAwqtnF7bXtrV2ktRpMoQGtSqD5G/UM80ZYNBE48iW032NlpRVrKoe2jtT7hfl0exh5Id/l/IHSFk/0HX4jCBQoRYMbTqAAMjXTPoGwtC86Oy9bmV+aEdQ/jy2BdvC2JoG8Jso/99Po93ANsw0hgqAkTzsAQ+K0LLhdHDwy4Pk2S9i9gE8Tp+U5w+IOVaDKKQhS/rIMwsCdeigkjld+LZb4Ldv5jmFl/lzQeoBTdVYAp3BQZCpvCOP9iNgvgra0IDG5QZq3pops7doXJoZqA/sgeBUgXO9HnaamqqrHZO//nO6835CBIY4PUWyqRM/TlnmdGU/yRmq1/dSlLkqQgjPU+bTsFuoFAd3Spk44GxWgkeGFmBulEa1PUBgwk9n+O5xyu4JhVX+YzylvD5oaTYICL7gWELdv5QrVxtThJoe2wmP21yFq5lOYb3B5B+gMC9XFRG5e0hdm8fQgHzPuQDtQPOUdfHnScNAuWWSnsm4zc+SJ64XWJRgdY1TzhepyvZi/jifLP3ga9H8rafhUrdfQ3OkiPwa31kXH9CwLRDAOIUcCRqYsy39CZ42W1mCWVLTAkADsHSIzibFQmMIIu+lx5dt3m9LjdOLbNOCUF3fl1SS4N2+JuW7cP8F3tlRUvdQijrP0F9gtQ5dP5WA5hp530Af0LDuX1LLg+CzpxFEZ0LclnyNfNBpagJalqbK7kkTaXsiwrd/ynf3sqzs35dyj0tZ7hTNxPMJGpNCxQq63qLxOl/qNTSFCzk0JTfFyPeWlP121g2SMhdJvccpsw1UpbpmeTAptTVgzO9YvlnsYY+Hh1JWXnM1SAAsEGzYi18fjDb4PSjP5XSAXB9pYNbY+jifwh/q/31MNjjVrHnKrTChdZE6+dcbsZ2/oybn+ghtD86Ng3H85LDQS0CvEHgPp+3IbYXwKsLYYIyUZzvUk8DFBxilIe0Jtla+JuCB3RRABLZzVhMYhMnnL4NNAlvoOmq/TlAGJwZ5D2yaOlgWYs2pJYI24G/yrqRGtHcT2F1B/mUzb0A9AXwupbF1vuSf8r6RJQ/ME7qFrqGv3jD0VzDkSNh0oSsX6FcZ5kO5PH8xxw5tzcRzU8psS83j7EpI3VFuz9q09/kZ1WqFIth/fGu4d4wIqu1SAJpdOdAmLc2IQjVGhOrryrMF0RHacnTKPlpZQ1qaILCKIjDh0QXoUwjziyKywT7kJRn77euwlqZBgGmCgQ6nlsxPfgwNMLLDLQJ1JrUC2DYYzyB+WdcVkXOXaNLJoXwQzn4E6I6h9gxXFVu1/SyBz7B6x3bbS/z/oLT15rYdtnpmUVP0dtCWJUAdNG3rkPB1o8lvdpVnu/G95Sp0wKvUKRgo8+yAlgYGogsNfAT0rqWdKHNGIG+QnpH6LKc2CecSXmgoBt8ctnFuChoMJ+zvK9kPfeWdtojxfj3fCs2fDRlN2U9NYr7aN1Bubhk3bM+OZZpvKQt1AIhGn2GrDnYzYTsnaJo+gqbM0hfQci0zjEkSaif1mcc6fchF0PkO1IQ0CJZ7w7JceWsE1gplDtIGJt8/4/aMk3cuKHB/2oLxpXHvhirzwYhsS2LkyWecJqvobbDH6AZeCLrRsqL0CcJzmgCbPpLqoib2EOUZR64MMNtweod5L4gQJhgvqOthQPpglPo/BTXkSj6cmhi0NO9Z2rScAOxEw7tuJx+4iNqqMmlPzzyADQzfsc3wDwLEqVJe+OgNbBHdHEqLEr4HGrLH+F8fyEyU659qso8k4IEAPif0TJh8+5QosAoN2I+a60+qinhjb1gEOvodfXUhou3mwz6UZ0N1ncWIfXWgzkE6g9oeP7WL+c4y8kRlAm0yDoj90x0p8F3paBXn6UyO0XiNTdvKqPGgTVVTw5gk1UI9yvkBDef2/vapAzWeVgOqe5NB3M8qG9fcKBqizLY13aWOLRK0Bxqnv0e8q9D0uDJ7DKU9uDNKUzJWAMVPBW5XVB3uKNSLGbfmVBWttl2fzPhd6eeTJDXO8/toJKmTirf1li/5AOB+n9mGk6o4Q64YZ9hECNV7led5gaCBt2Vc14XUjoXTxAATb02NEaiXpU2+8DYZgsIdFobBMFZHIM1XuGJe+yplPrndNwBeFtZkSMIWDcYWADjsUbUQBtOhlAaw+9rTprZvRMqGRnxCIC80DS8YyvQF8NEWAQrNwa5hzYfPA+V98BaDDQu2Oy8xFAOD4GJqA3CMwEkpQSQAC8AMjN5hxN7R0qawBvJhzqtrEr4TQORq/hd2LPnEPlsp5QFQ70NAOAznRoXyoJ9xTlt7SzmHE/QHxwTb5S0soFQFwJlPX0p9+nNOjqLNjnKgpioj1dH9dCsuKDGc/90WIdUrQXE9lNntdJq86+VqaA80WzYbmAtSlAlGPqMmAEWAsA1m8rr5yMKEs+pXgDasGF+LkR3M5X5JnwsouU3SwTzRPArErIMI0NT2QPP1LVe1JxSybcIMEfjLj19ym4VZY+/8qbhaP8l/NbUAMCztmVV9pVww+smaFBT8fchn35TrtjG7hSv13aPOuKKBMZh8C7o9K34XOKRwU80jvuB/l/3cNniYppSH7WKkNgUaWj8yOOjzwNjpKKiZGcG26ghg9TtqPtpq5tKG5KcNqWEy9eWVXIBdYjo0le7p2DaDpxoMfk9JOV+WUah/w3eGA2f639pVBGT+c19Q65gmkvbNqiJsyEgp9w5Jm2n6CwvhjWO04RcuKgBARwWMun2tFvj+WHrphd/Rmt81QEzQTgoazPaGsAY+wIsdeuQ3bygsTBtxF46tYa2GT9heMKHpvlLXG0WorYpoD1bl59SS9typvPgIupN1cwd3pojlAk2J7pTzyTG807IAFYul3ggC103HkLOINh2jDkulDgeSsR8T4xEwz3OZYHQM1T/SAq7eIUybc5zATNsq82GuhV5c+PFLogwyr6X2pasww4u4yrcRAM1WqvJBqAUl2vGcFee7gweH5H+QAmOgqnoUSxHtjSAsoFmGK/qEgLHtDRQA2JYaTI1AK2r2elHT42/5IHTFfcyHyMbQmu6rqkbshS1GeH7NTnpMBQ1Eh7OOIyOMYKGpwVbQJspyfIuU4dsuwcD4TfkbAhXxpFayPdh+hxCFF86rEVXsS+3XaBqVr9a8b5Hcg0YL8WnugTCXa4nPdQNAwunY1LS1DAIVurxDEwR7lbfk72vZJoCA7WJ+61VACLfN7uP8wFyAp9108oAm7KcOCcpczuCM46kt7MPrcJEfyMXse/L3DdTINKI2sB+1hseGDPdv4oJpMufkm+RHuIYt10lJDLSdpqYiIJaOXi+EJ41FWM1SFerXMG0ec6V8PPPq6Huu3KurPT9atCfrKPvxDSa626ApGVaNc0a3BfWzyuYMrSQaG3gRDFIVe/FxqAEZJGJynE4A7AecO4ranWoHNFzxdY8LvIXJvUTmF+sAWArSrqp6Q8CfRhCySMWz9brOX53ijKvQvZuoBRxHnvWgCri104j1KPJ0fOPgJTACLeHqOAjCP2TCPH6fq2b05b9D74SwezSUTkrZF1jgwG5oVIxxArh6KOgSbMg7iWAMPBpeNfCYepnaCTx7uOS5McbcmE8gCffvSyz5lhL8AHAOlTHql1Jj8wG1Z79o7j3PNmE8rubvh5QL2O5BEMqvEr4PoOhILt4xJ7Dw2o2y4sgAoAEQvkxVhBmwlQltG7TWvYPbUNgiZZlLOGdfYn8NojYQoPHpUFlvc7Hh29HNJNg+l/Ola5L2/qY1NYzr0cOS5bYaqNaNXIXpCB/ePTFWuyYaUw02J7o+hJGazq6jp4zB5UlckBFUjwEJg/EavlbRBrRZAopXpA5Y6QTV1Q9Vd/A7eR8EwBVSl4kUBLvW0Ke0SqVTjYfL8Jnr/JjPHMIVXVB72VEZvOS4woSWA6p2XfA0XGujqu7f+3Q5BWbc+QoAAuPFn+KEtkfMFKrgAUz8LW/YU0wOZINA+hpbXzpBI89D+MH7bQuC/xly/cdQPmjoOsN7i5o5hKh/L1QcwMu6mmqmCmrJIyl2iWmTA2HYNGa5AKkHSNmbsN0A7fOCNhZhHqg8w+UwMBhJLcya0FxYrJlD0LRsRjDegPOhTWheTOK1hYZ6T2bQuAaaewAXh9DdfgdqN76jluyXlP1fznY/xgXEzqrCButblm2a1xcovbcdtD7QrPwUehc0OOM5l7cmeJtjA6k80mJnbrttzUXiDIMn1WHWVZsUgsYulYcr+7KXlhVZVjVTVElxpxphn6Vltqi9u0m9pgVWf5ey0/sTQYZBDfbXTdb1UI9tFbXdUyCwhX43GS4fKHV6wfDcXkTDOsI4byfPzq2B9pQqc9C9gVKnGxOWF24nYu5cUs1twmr59sCl/WjzU1MAHYIQWw2XqsLZRoRpOjVnMND+1qKFmae8wFgtsG2gHDly5KgAVF5e/pvffrJtf4yoCUBDsrlDD0jZnqdqAtAEtE9GzVJS12NpxxuqwnCspk7vvSewQplRk4CGffKrpLu4WsU2xFMqfgTkuIS+hrErAGQ7eV+RpBtsgMaRI0eOqpNswmSFMlscf1yDdZ5rqVfsk3NFkMJL4HkmbZYabCMMUYsM4wNDz3VFkKzUrNShVr7FUOZ9NShw35f64SwWk60P1I2fJiwW9gDQlGR1cGTSNv0gbYKhLrYvh9WWD5peZ3C5fFLqB3dI7HfDm2YPzqkkhzFChQ+bC2gOAdpwAOpSxzYdOXJUW8m8/VQPKGr7yVHdJbgdKy+GwcowwKvGOsCgFnZZy2jfUtv7DMAXtgDYy4dHFM5Yakzw/AsXBTBqhR3AXAaFzOI7nKfc9pMjR44KTNh+cmc/OaqTRBCxpIbrgO2dVXWoz6DF+ZLJkSNHjuodOZduR44cOXLkyJEDNY4cOXLkyJEjR7WF/O2nDbnvXd9oIzfEjhw5cuTI0W8L1CAA0DauOxw5clQA6khe84PrCkeOHBWS/l+AAQACYD7v73Ou8wAAAABJRU5ErkJggg==
Annex
Annexe
Annex
Version
Édition
Table of Contents
Sommaire
Contents
Page
Page
Key
Légende
where
où
Descriptors
第 # 部分:
modified
modifiée
modified
SOURCE
Keywords
DEPRECATED
DEPRECATED
List of Tables
List of Figures
Table of Figures
List of Recommendations
Acknowledgements
Abstract
Summary
in
Partly Supercedes
部分代替
Completion date for this manuscript
本稿完成日期
Issuance Date: #
# 发布
Implementation Date: #
# 实施
normative
规范性附录
CAUTION
注意
WARNING
警告
AMENDMENT
(continued)
(continué)
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
blue
underline
pre
wrap
Code
Courier New
12pt
14pt
14pt
justify
8pt
8pt
5mm
bold
8pt
8pt
1mm
bold
always
bold
center
6pt
12pt
bold
12pt
12pt
10pt
8pt
8pt
0mm
4pt
justify
125%
10mm5mm
5mm
bold
0mm
4pt
BlockQuote
12pt
12mm
12mm
right
center
12pt
12pt
always
center
100%
100%
scale-to-fit
uniform
Courier New
11pt
bold
center
12pt
always
rgb(0, 255, 0)
red
underline
red
line-through
STIX Two Math
135%
2.5pt solid rgb(0, 176, 80)2.5pt solid rgb(255, 0, 0)
15
0
100%
fixed
mm
mm
0pt solid black
1
true
0pt solid black
0pt solid black
—
bold
center
1mm
before
center
after
before
left
1mm
1mm
super
10pt
0
0mm
0mm
0mm
10pt
0
|
|
0
10
11
pt
pt
A
closing
A
C
closing
C
5mm
100%
scale-down-to-fit
uniform
-
.
:
=
_
==========
=
en
<
xmlns="http://www.w3.org/1998/Math/MathML"
="
"
>
</
>
<>
、—
, —
()
:
100%
100%
scale-down-to-fit
uniform
%
14
Figure
1
1
100%
100%
scale-down-to-fit
uniform
100%
100%
scale-down-to-fit
%
uniform
English
Français
Deutsche
version
Figures
Tableaux
Tables
Deutsche
version
pt
pt
Obligation
Target Type
Target Type
Dependency
0pt
rgb(33, 55, 92)
rgb(252, 246, 222)
rgb(233, 235, 239)
left
0mm
0mm
left
bold
inline
inline
block
inline
block
block
[
]
source
5mm
,
—
always
50%
always
super
25
3
0
<>
:
18pt
_to
true
true
Date
Type
Change
Pages
10
BUTTON
[]
3.5mm
100%
scale-down-to-fit
uniform
3.5mm
100%
scale-down-to-fit
uniform
|
333 |
January
February
March
April
May
June
July
August
September
October
November
December
month_january
month_february
month_march
month_april
month_may
month_june
month_july
month_august
month_september
month_october
month_november
month_december
true
;
1
1
-
[WARNING]: Document namespace: '' doesn't equal to xslt namespace ''
English
French
Deutsch
Chinese
58%
30%
false
2mm
rgb(255, 185, 185)
2mm
rl-tb
start
end
left
7mm
One-
First
Two-
Second
Three-
Third
Four-
Fourth
Five-
Fifth
Six-
Sixth
Seven-
Seventh
Eight-
Eighth
Nine-
Ninth
Tenth
Eleventh
Twelfth
Thirteenth
Fourteenth
Fifteenth
Sixteenth
Seventeenth
Eighteenth
Nineteenth
Twenty-
Twentieth
Thirty-
Thirtieth
Forty-
Fortieth
Fifty-
Fiftieth
Sixty-
Sixtieth
Seventy-
Seventieth
Eighty-
Eightieth
Ninety-
Ninetieth
Hundred-
Hundredth