module Dydx module Algebra module Operator module Parts module Formula %w(+ *).map(&:to_sym).each do |operator| define_method(operator) do |x| if self.operator == operator if f.combinable?(x, operator) f.send(operator, x).send(operator, g) elsif g.combinable?(x, operator) g.send(operator, x).send(operator, f) else super(x) end elsif send("#{to_str(super_ope(operator))}?") && x.send("#{to_str(super_ope(operator))}?") return super(x) if !common_factors(x) || (operator == :* && common_factors(x)[0] != common_factors(x)[1]) w1, w2 = common_factors(x) case operator when :+ send(w1).send(super_ope(operator), send(rest(w1)).send(operator, x.send(rest(w2)))) when :* if w1 == :f send(w1).send(super_ope(operator), send(rest(w1)).send(sub_ope(operator), x.send(rest(w2)))) elsif w1 == :g send(w1).send(super_ope(operator), send(rest(w1)).send(operator, x.send(rest(w2)))).commutate! end end elsif send("#{to_str(super_ope(operator))}?") && x.send("#{to_str_inv(operator)}?") && x.x.send("#{to_str(super_ope(operator))}?") return super(x) if !common_factors(x.x) || (operator == :* && common_factors(x.x)[0] != common_factors(x.x)[1]) w1, w2 = common_factors(x.x) case operator when :+ send(w1).send(super_ope(operator), send(rest(w1)).send(inverse_ope(operator), x.x.send(rest(w2)))) when :* if w1 == :f send(w1).send(super_ope(operator), send(rest(w1)).send(inverse_ope(sub_ope(operator)), x.x.send(rest(w2)))) elsif w1 == :g send(w1).send(super_ope(operator), send(rest(w1)).send(inverse_ope(operator), x.x.send(rest(w2)))).commutate! end end else super(x) end end end def ^(x) if multiplication? && openable?(x) (f ^ x).send(self.operator, (g ^ x)) else super(x) end end def to_str(operator) { addition: :+, multiplication: :*, exponentiation: :^ }.key(operator) end def to_str_inv(operator) { subtrahend: :+, divisor: :* }.key(operator) end def rest(f_or_g) ([:f, :g] - [f_or_g]).first end end end end end end