//////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // //////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_TREE_HPP #define BOOST_CONTAINER_FLAT_TREE_HPP #ifndef BOOST_CONFIG_HPP # include #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include #include #include #include #include #include #include #include #include #include //algo_equal(), algo_lexicographical_compare #include #include #include #include #include #include #include #include //pair #include #include #include #include #include #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include #endif #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //merge_unique #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME merge_unique #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 3 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 3 #include //merge_equal #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME merge #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 3 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 3 #include //index_of #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME index_of #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1 #include //nth #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME nth #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1 #include //reserve #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME reserve #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1 #include //capacity #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME capacity #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl { #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}} #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 0 #define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 0 #include #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { namespace dtl { /////////////////////////////////////// // // Helper functions to merge elements // /////////////////////////////////////// BOOST_INTRUSIVE_INSTANTIATE_DEFAULT_TYPE_TMPLT(stored_allocator_type) /////////////////////////////////////// // // flat_tree_container_inplace_merge // /////////////////////////////////////// template void flat_tree_container_inplace_merge //is_contiguous_container == true (SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp , dtl::true_) { typedef typename SequenceContainer::value_type value_type; value_type *const braw = boost::movelib::iterator_to_raw_pointer(dest.begin()); value_type *const iraw = boost::movelib::iterator_to_raw_pointer(it); value_type *const eraw = boost::movelib::iterator_to_raw_pointer(dest.end()); boost::movelib::adaptive_merge(braw, iraw, eraw, comp, eraw, dest.capacity()- dest.size()); } template void flat_tree_container_inplace_merge //is_contiguous_container == false (SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp, dtl::false_) { boost::movelib::adaptive_merge(dest.begin(), it, dest.end(), comp); } /////////////////////////////////////// // // flat_tree_container_inplace_sort_ending // /////////////////////////////////////// template void flat_tree_container_inplace_sort_ending //is_contiguous_container == true (SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp, dtl::true_) { typedef typename SequenceContainer::value_type value_type; value_type *const iraw = boost::movelib::iterator_to_raw_pointer(it); value_type *const eraw = boost::movelib::iterator_to_raw_pointer(dest.end()); boost::movelib::adaptive_sort(iraw, eraw, comp, eraw, dest.capacity()- dest.size()); } template void flat_tree_container_inplace_sort_ending //is_contiguous_container == false (SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp , dtl::false_) { boost::movelib::adaptive_sort(it, dest.end(), comp); } /////////////////////////////////////// // // flat_tree_merge // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE void flat_tree_merge_equal (SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::true_) { dest.merge(first, last, comp); } template BOOST_CONTAINER_FORCEINLINE void flat_tree_merge_equal //has_merge_unique == false (SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::false_) { typedef typename SequenceContainer::iterator iterator; iterator const it = dest.insert( dest.end(), first, last ); dtl::bool_::value> contiguous_tag; (flat_tree_container_inplace_merge)(dest, it, comp, contiguous_tag); } /////////////////////////////////////// // // flat_tree_merge_unique // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE void flat_tree_merge_unique //has_merge_unique == true (SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::true_) { dest.merge_unique(first, last, comp); } template BOOST_CONTAINER_FORCEINLINE void flat_tree_merge_unique //has_merge_unique == false (SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::false_) { typedef typename SequenceContainer::iterator iterator; typedef typename SequenceContainer::size_type size_type; size_type const old_sz = dest.size(); iterator const first_new = dest.insert(dest.cend(), first, last ); iterator e = boost::movelib::inplace_set_difference(first_new, dest.end(), dest.begin(), first_new, comp); dest.erase(e, dest.end()); dtl::bool_::value> contiguous_tag; (flat_tree_container_inplace_merge)(dest, dest.begin()+old_sz, comp, contiguous_tag); } /////////////////////////////////////// // // flat_tree_index_of // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::size_type flat_tree_index_of // has_index_of == true (SequenceContainer& cont, Iterator p, dtl::true_) { return cont.index_of(p); } template BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::size_type flat_tree_index_of // has_index_of == false (SequenceContainer& cont, Iterator p, dtl::false_) { typedef typename SequenceContainer::size_type size_type; return static_cast(p - cont.begin()); } /////////////////////////////////////// // // flat_tree_nth // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE Iterator flat_tree_nth // has_nth == true (SequenceContainer& cont, typename SequenceContainer::size_type n, dtl::true_) { return cont.nth(n); } template BOOST_CONTAINER_FORCEINLINE Iterator flat_tree_nth // has_nth == false (SequenceContainer& cont, typename SequenceContainer::size_type n, dtl::false_) { return cont.begin()+ n; } /////////////////////////////////////// // // flat_tree_get_stored_allocator // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::stored_allocator_type & flat_tree_get_stored_allocator // has_get_stored_allocator == true (SequenceContainer& cont, dtl::true_) { return cont.get_stored_allocator(); } template BOOST_CONTAINER_FORCEINLINE const typename SequenceContainer::stored_allocator_type & flat_tree_get_stored_allocator // has_get_stored_allocator == true (const SequenceContainer& cont, dtl::true_) { return cont.get_stored_allocator(); } template BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::allocator_type flat_tree_get_stored_allocator // has_get_stored_allocator == false (SequenceContainer& cont, dtl::false_) { return cont.get_allocator(); } /////////////////////////////////////// // // flat_tree_adopt_sequence_equal // /////////////////////////////////////// template void flat_tree_sort_contiguous_to_adopt // is_contiguous_container == true (SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp) { if(tseq.capacity() >= (seq.capacity() - seq.size())) { tseq.clear(); boost::movelib::adaptive_sort (boost::movelib::iterator_to_raw_pointer(seq.begin()) , boost::movelib::iterator_to_raw_pointer(seq.end()) , comp , boost::movelib::iterator_to_raw_pointer(tseq.begin()) , tseq.capacity()); } else{ boost::movelib::adaptive_sort (boost::movelib::iterator_to_raw_pointer(seq.begin()) , boost::movelib::iterator_to_raw_pointer(seq.end()) , comp , boost::movelib::iterator_to_raw_pointer(seq.end()) , seq.capacity() - seq.size()); } } template void flat_tree_adopt_sequence_equal // is_contiguous_container == true (SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::true_) { flat_tree_sort_contiguous_to_adopt(tseq, boost::move(seq), comp); tseq = boost::move(seq); } template void flat_tree_adopt_sequence_equal // is_contiguous_container == false (SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::false_) { boost::movelib::adaptive_sort(seq.begin(), seq.end(), comp); tseq = boost::move(seq); } /////////////////////////////////////// // // flat_tree_adopt_sequence_unique // /////////////////////////////////////// template void flat_tree_adopt_sequence_unique// is_contiguous_container == true (SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::true_) { boost::movelib::pdqsort ( boost::movelib::iterator_to_raw_pointer(seq.begin()) , boost::movelib::iterator_to_raw_pointer(seq.end()) , comp); seq.erase(boost::movelib::unique (seq.begin(), seq.end(), boost::movelib::negate(comp)), seq.cend()); tseq = boost::move(seq); } template void flat_tree_adopt_sequence_unique// is_contiguous_container == false (SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::false_) { boost::movelib::pdqsort(seq.begin(), seq.end(), comp); seq.erase(boost::movelib::unique (seq.begin(), seq.end(), boost::movelib::negate(comp)), seq.cend()); tseq = boost::move(seq); } /////////////////////////////////////// // // flat_tree_reserve // /////////////////////////////////////// template BOOST_CONTAINER_FORCEINLINE void // has_reserve == true flat_tree_reserve(SequenceContainer &tseq, typename SequenceContainer::size_type cap, dtl::true_) { tseq.reserve(cap); } template BOOST_CONTAINER_FORCEINLINE void // has_reserve == false flat_tree_reserve(SequenceContainer &, typename SequenceContainer::size_type, dtl::false_) { } /////////////////////////////////////// // // flat_tree_capacity // /////////////////////////////////////// template // has_capacity == true BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::size_type flat_tree_capacity(const SequenceContainer &tseq, dtl::true_) { return tseq.capacity(); } template // has_capacity == false BOOST_CONTAINER_FORCEINLINE typename SequenceContainer::size_type flat_tree_capacity(const SequenceContainer &tseq, dtl::false_) { return tseq.size(); } /////////////////////////////////////// // // flat_tree_value_compare // /////////////////////////////////////// template class flat_tree_value_compare : private Compare { typedef Value first_argument_type; typedef Value second_argument_type; typedef bool return_type; public: flat_tree_value_compare() : Compare() {} flat_tree_value_compare(const Compare &pred) : Compare(pred) {} bool operator()(const Value& lhs, const Value& rhs) const { KeyOfValue key_extract; return Compare::operator()(key_extract(lhs), key_extract(rhs)); } const Compare &get_comp() const { return *this; } Compare &get_comp() { return *this; } }; /////////////////////////////////////// // // select_container_type // /////////////////////////////////////// template < class Value, class AllocatorOrContainer , bool = boost::container::dtl::is_container::value > struct select_container_type { typedef AllocatorOrContainer type; }; template struct select_container_type { typedef boost::container::vector type; }; /////////////////////////////////////// // // flat_tree // /////////////////////////////////////// template class flat_tree { public: typedef typename select_container_type::type container_type; typedef container_type sequence_type; //For backwards compatibility private: typedef typename container_type::allocator_type allocator_t; typedef allocator_traits allocator_traits_type; public: typedef flat_tree_value_compare value_compare; private: struct Data //Inherit from value_compare to do EBO : public value_compare { BOOST_COPYABLE_AND_MOVABLE(Data) public: Data() : value_compare(), m_seq() {} explicit Data(const allocator_t &alloc) : value_compare(), m_seq(alloc) {} explicit Data(const Compare &comp) : value_compare(comp), m_seq() {} Data(const Compare &comp, const allocator_t &alloc) : value_compare(comp), m_seq(alloc) {} explicit Data(const Data &d) : value_compare(static_cast(d)), m_seq(d.m_seq) {} Data(BOOST_RV_REF(Data) d) : value_compare(boost::move(static_cast(d))), m_seq(boost::move(d.m_seq)) {} Data(const Data &d, const allocator_t &a) : value_compare(static_cast(d)), m_seq(d.m_seq, a) {} Data(BOOST_RV_REF(Data) d, const allocator_t &a) : value_compare(boost::move(static_cast(d))), m_seq(boost::move(d.m_seq), a) {} Data& operator=(BOOST_COPY_ASSIGN_REF(Data) d) { this->value_compare::operator=(d); m_seq = d.m_seq; return *this; } Data& operator=(BOOST_RV_REF(Data) d) { this->value_compare::operator=(boost::move(static_cast(d))); m_seq = boost::move(d.m_seq); return *this; } void swap(Data &d) { value_compare& mycomp = *this, & othercomp = d; boost::adl_move_swap(mycomp, othercomp); this->m_seq.swap(d.m_seq); } container_type m_seq; }; Data m_data; BOOST_COPYABLE_AND_MOVABLE(flat_tree) public: typedef typename container_type::value_type value_type; typedef typename container_type::pointer pointer; typedef typename container_type::const_pointer const_pointer; typedef typename container_type::reference reference; typedef typename container_type::const_reference const_reference; typedef typename KeyOfValue::type key_type; typedef Compare key_compare; typedef typename container_type::allocator_type allocator_type; typedef typename container_type::size_type size_type; typedef typename container_type::difference_type difference_type; typedef typename container_type::iterator iterator; typedef typename container_type::const_iterator const_iterator; typedef typename container_type::reverse_iterator reverse_iterator; typedef typename container_type::const_reverse_iterator const_reverse_iterator; //!Standard extension typedef BOOST_INTRUSIVE_OBTAIN_TYPE_WITH_DEFAULT (boost::container::dtl::, container_type ,stored_allocator_type, allocator_type) stored_allocator_type; static const bool has_stored_allocator_type = BOOST_INTRUSIVE_HAS_TYPE(boost::container::dtl::, container_type, stored_allocator_type); private: typedef allocator_traits stored_allocator_traits; public: typedef typename dtl::if_c ::type get_stored_allocator_const_return_t; typedef typename dtl::if_c ::type get_stored_allocator_noconst_return_t; BOOST_CONTAINER_FORCEINLINE flat_tree() : m_data() { } BOOST_CONTAINER_FORCEINLINE explicit flat_tree(const Compare& comp) : m_data(comp) { } BOOST_CONTAINER_FORCEINLINE explicit flat_tree(const allocator_type& a) : m_data(a) { } BOOST_CONTAINER_FORCEINLINE flat_tree(const Compare& comp, const allocator_type& a) : m_data(comp, a) { } BOOST_CONTAINER_FORCEINLINE flat_tree(const flat_tree& x) : m_data(x.m_data) { } BOOST_CONTAINER_FORCEINLINE flat_tree(BOOST_RV_REF(flat_tree) x) BOOST_NOEXCEPT_IF(boost::container::dtl::is_nothrow_move_constructible::value) : m_data(boost::move(x.m_data)) { } BOOST_CONTAINER_FORCEINLINE flat_tree(const flat_tree& x, const allocator_type &a) : m_data(x.m_data, a) { } BOOST_CONTAINER_FORCEINLINE flat_tree(BOOST_RV_REF(flat_tree) x, const allocator_type &a) : m_data(boost::move(x.m_data), a) { } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_range_t, InputIterator first, InputIterator last) : m_data() { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_range_t, InputIterator first, InputIterator last, const Compare& comp) : m_data(comp) { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_range_t, InputIterator first, InputIterator last, const Compare& comp, const allocator_type& a) : m_data(comp, a) { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last) : m_data() { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last, const Compare& comp) : m_data(comp) { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last, const Compare& comp, const allocator_type& a) : m_data(comp, a) { this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last); BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp())); } template BOOST_CONTAINER_FORCEINLINE flat_tree( bool unique_insertion, InputIterator first, InputIterator last) : m_data() { this->priv_range_insertion_construct(unique_insertion, first, last); } template BOOST_CONTAINER_FORCEINLINE flat_tree( bool unique_insertion, InputIterator first, InputIterator last , const Compare& comp) : m_data(comp) { this->priv_range_insertion_construct(unique_insertion, first, last); } template BOOST_CONTAINER_FORCEINLINE flat_tree( bool unique_insertion, InputIterator first, InputIterator last , const allocator_type& a) : m_data(a) { this->priv_range_insertion_construct(unique_insertion, first, last); } template BOOST_CONTAINER_FORCEINLINE flat_tree( bool unique_insertion, InputIterator first, InputIterator last , const Compare& comp, const allocator_type& a) : m_data(comp, a) { this->priv_range_insertion_construct(unique_insertion, first, last); } BOOST_CONTAINER_FORCEINLINE ~flat_tree() {} BOOST_CONTAINER_FORCEINLINE flat_tree& operator=(BOOST_COPY_ASSIGN_REF(flat_tree) x) { m_data = x.m_data; return *this; } BOOST_CONTAINER_FORCEINLINE flat_tree& operator=(BOOST_RV_REF(flat_tree) x) BOOST_NOEXCEPT_IF( (allocator_traits_type::propagate_on_container_move_assignment::value || allocator_traits_type::is_always_equal::value) && boost::container::dtl::is_nothrow_move_assignable::value) { m_data = boost::move(x.m_data); return *this; } BOOST_CONTAINER_FORCEINLINE const value_compare &priv_value_comp() const { return static_cast(this->m_data); } BOOST_CONTAINER_FORCEINLINE value_compare &priv_value_comp() { return static_cast(this->m_data); } BOOST_CONTAINER_FORCEINLINE const key_compare &priv_key_comp() const { return this->priv_value_comp().get_comp(); } BOOST_CONTAINER_FORCEINLINE key_compare &priv_key_comp() { return this->priv_value_comp().get_comp(); } struct insert_commit_data { const_iterator position; }; public: // accessors: BOOST_CONTAINER_FORCEINLINE Compare key_comp() const { return this->m_data.get_comp(); } BOOST_CONTAINER_FORCEINLINE value_compare value_comp() const { return this->m_data; } BOOST_CONTAINER_FORCEINLINE allocator_type get_allocator() const { return this->m_data.m_seq.get_allocator(); } BOOST_CONTAINER_FORCEINLINE get_stored_allocator_const_return_t get_stored_allocator() const { return flat_tree_get_stored_allocator(this->m_data.m_seq, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE get_stored_allocator_noconst_return_t get_stored_allocator() { return flat_tree_get_stored_allocator(this->m_data.m_seq, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE iterator begin() { return this->m_data.m_seq.begin(); } BOOST_CONTAINER_FORCEINLINE const_iterator begin() const { return this->cbegin(); } BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const { return this->m_data.m_seq.begin(); } BOOST_CONTAINER_FORCEINLINE iterator end() { return this->m_data.m_seq.end(); } BOOST_CONTAINER_FORCEINLINE const_iterator end() const { return this->cend(); } BOOST_CONTAINER_FORCEINLINE const_iterator cend() const { return this->m_data.m_seq.end(); } BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() { return reverse_iterator(this->end()); } BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const { return this->crbegin(); } BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const { return const_reverse_iterator(this->cend()); } BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() { return reverse_iterator(this->begin()); } BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const { return this->crend(); } BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const { return const_reverse_iterator(this->cbegin()); } BOOST_CONTAINER_FORCEINLINE bool empty() const { return this->m_data.m_seq.empty(); } BOOST_CONTAINER_FORCEINLINE size_type size() const { return this->m_data.m_seq.size(); } BOOST_CONTAINER_FORCEINLINE size_type max_size() const { return this->m_data.m_seq.max_size(); } BOOST_CONTAINER_FORCEINLINE void swap(flat_tree& other) BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value && boost::container::dtl::is_nothrow_swappable::value ) { this->m_data.swap(other.m_data); } public: // insert/erase std::pair insert_unique(const value_type& val) { std::pair ret; insert_commit_data data; ret.second = this->priv_insert_unique_prepare(KeyOfValue()(val), data); ret.first = ret.second ? this->priv_insert_commit(data, val) : this->begin() + (data.position - this->cbegin()); //: iterator(vector_iterator_get_ptr(data.position)); return ret; } std::pair insert_unique(BOOST_RV_REF(value_type) val) { std::pair ret; insert_commit_data data; ret.second = this->priv_insert_unique_prepare(KeyOfValue()(val), data); ret.first = ret.second ? this->priv_insert_commit(data, boost::move(val)) : this->begin() + (data.position - this->cbegin()); //: iterator(vector_iterator_get_ptr(data.position)); return ret; } iterator insert_equal(const value_type& val) { iterator i = this->upper_bound(KeyOfValue()(val)); i = this->m_data.m_seq.insert(i, val); return i; } iterator insert_equal(BOOST_RV_REF(value_type) mval) { iterator i = this->upper_bound(KeyOfValue()(mval)); i = this->m_data.m_seq.insert(i, boost::move(mval)); return i; } iterator insert_unique(const_iterator hint, const value_type& val) { BOOST_ASSERT(this->priv_in_range_or_end(hint)); insert_commit_data data; return this->priv_insert_unique_prepare(hint, KeyOfValue()(val), data) ? this->priv_insert_commit(data, val) : this->begin() + (data.position - this->cbegin()); //: iterator(vector_iterator_get_ptr(data.position)); } iterator insert_unique(const_iterator hint, BOOST_RV_REF(value_type) val) { BOOST_ASSERT(this->priv_in_range_or_end(hint)); insert_commit_data data; return this->priv_insert_unique_prepare(hint, KeyOfValue()(val), data) ? this->priv_insert_commit(data, boost::move(val)) : this->begin() + (data.position - this->cbegin()); //: iterator(vector_iterator_get_ptr(data.position)); } iterator insert_equal(const_iterator hint, const value_type& val) { BOOST_ASSERT(this->priv_in_range_or_end(hint)); insert_commit_data data; this->priv_insert_equal_prepare(hint, val, data); return this->priv_insert_commit(data, val); } iterator insert_equal(const_iterator hint, BOOST_RV_REF(value_type) mval) { BOOST_ASSERT(this->priv_in_range_or_end(hint)); insert_commit_data data; this->priv_insert_equal_prepare(hint, mval, data); return this->priv_insert_commit(data, boost::move(mval)); } template void insert_unique(InIt first, InIt last) { dtl::bool_::value> contiguous_tag; container_type &seq = this->m_data.m_seq; value_compare &val_cmp = this->priv_value_comp(); //Step 1: put new elements in the back typename container_type::iterator const it = seq.insert(seq.cend(), first, last); //Step 2: sort them boost::movelib::pdqsort(it, seq.end(), val_cmp); //Step 3: only left unique values from the back not already present in the original range typename container_type::iterator const e = boost::movelib::inplace_set_unique_difference (it, seq.end(), seq.begin(), it, val_cmp); seq.erase(e, seq.cend()); //Step 4: merge both ranges (flat_tree_container_inplace_merge)(seq, it, this->priv_value_comp(), contiguous_tag); } template void insert_equal(InIt first, InIt last) { dtl::bool_::value> contiguous_tag; container_type &seq = this->m_data.m_seq; typename container_type::iterator const it = seq.insert(seq.cend(), first, last); (flat_tree_container_inplace_sort_ending)(seq, it, this->priv_value_comp(), contiguous_tag); (flat_tree_container_inplace_merge) (seq, it, this->priv_value_comp(), contiguous_tag); } //Ordered template void insert_equal(ordered_range_t, InIt first, InIt last) { const bool value = boost::container::dtl:: has_member_function_callable_with_merge_unique::value; (flat_tree_merge_equal)(this->m_data.m_seq, first, last, this->priv_value_comp(), dtl::bool_()); } template void insert_unique(ordered_unique_range_t, InIt first, InIt last) { const bool value = boost::container::dtl:: has_member_function_callable_with_merge_unique::value; (flat_tree_merge_unique)(this->m_data.m_seq, first, last, this->priv_value_comp(), dtl::bool_()); } #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template std::pair emplace_unique(BOOST_FWD_REF(Args)... args) { typename aligned_storage::value>::type v; value_type *pval = reinterpret_cast(v.data); get_stored_allocator_noconst_return_t a = this->get_stored_allocator(); stored_allocator_traits::construct(a, pval, ::boost::forward(args)... ); value_destructor d(a, *pval); return this->insert_unique(::boost::move(*pval)); } template iterator emplace_hint_unique(const_iterator hint, BOOST_FWD_REF(Args)... args) { //hint checked in insert_unique typename aligned_storage::value>::type v; value_type *pval = reinterpret_cast(v.data); get_stored_allocator_noconst_return_t a = this->get_stored_allocator(); stored_allocator_traits::construct(a, pval, ::boost::forward(args)... ); value_destructor d(a, *pval); return this->insert_unique(hint, ::boost::move(*pval)); } template iterator emplace_equal(BOOST_FWD_REF(Args)... args) { typename aligned_storage::value>::type v; value_type *pval = reinterpret_cast(v.data); get_stored_allocator_noconst_return_t a = this->get_stored_allocator(); stored_allocator_traits::construct(a, pval, ::boost::forward(args)... ); value_destructor d(a, *pval); return this->insert_equal(::boost::move(*pval)); } template iterator emplace_hint_equal(const_iterator hint, BOOST_FWD_REF(Args)... args) { //hint checked in insert_equal typename aligned_storage::value>::type v; value_type *pval = reinterpret_cast(v.data); get_stored_allocator_noconst_return_t a = this->get_stored_allocator(); stored_allocator_traits::construct(a, pval, ::boost::forward(args)... ); value_destructor d(a, *pval); return this->insert_equal(hint, ::boost::move(*pval)); } template BOOST_CONTAINER_FORCEINLINE std::pair try_emplace (const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(Args)... args) { std::pair ret; insert_commit_data data; const key_type & k = key; ret.second = hint == const_iterator() ? this->priv_insert_unique_prepare(k, data) : this->priv_insert_unique_prepare(hint, k, data); if(!ret.second){ ret.first = this->nth(data.position - this->cbegin()); } else{ typedef typename emplace_functor_type::type func_t; typedef emplace_iterator it_t; func_t func(try_emplace_t(), ::boost::forward(key), ::boost::forward(args)...); ret.first = this->m_data.m_seq.insert(data.position, it_t(func), it_t()); } return ret; } #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ std::pair emplace_unique(BOOST_MOVE_UREF##N)\ {\ typename aligned_storage::value>::type v;\ value_type *pval = reinterpret_cast(v.data);\ get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\ stored_allocator_traits::construct(a, pval BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ value_destructor d(a, *pval);\ return this->insert_unique(::boost::move(*pval));\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_unique(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ typename aligned_storage::value>::type v;\ value_type *pval = reinterpret_cast(v.data);\ get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\ stored_allocator_traits::construct(a, pval BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ value_destructor d(a, *pval);\ return this->insert_unique(hint, ::boost::move(*pval));\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_equal(BOOST_MOVE_UREF##N)\ {\ typename aligned_storage::value>::type v;\ value_type *pval = reinterpret_cast(v.data);\ get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\ stored_allocator_traits::construct(a, pval BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ value_destructor d(a, *pval);\ return this->insert_equal(::boost::move(*pval));\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_equal(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ typename aligned_storage ::value>::type v;\ value_type *pval = reinterpret_cast(v.data);\ get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\ stored_allocator_traits::construct(a, pval BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ value_destructor d(a, *pval);\ return this->insert_equal(hint, ::boost::move(*pval));\ }\ template \ BOOST_CONTAINER_FORCEINLINE std::pair\ try_emplace(const_iterator hint, BOOST_FWD_REF(KeyType) key BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ std::pair ret;\ insert_commit_data data;\ const key_type & k = key;\ ret.second = hint == const_iterator()\ ? this->priv_insert_unique_prepare(k, data)\ : this->priv_insert_unique_prepare(hint, k, data);\ \ if(!ret.second){\ ret.first = this->nth(data.position - this->cbegin());\ }\ else{\ typedef typename emplace_functor_type::type func_t;\ typedef emplace_iterator it_t;\ func_t func(try_emplace_t(), ::boost::forward(key) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ ret.first = this->m_data.m_seq.insert(data.position, it_t(func), it_t());\ }\ return ret;\ }\ // BOOST_MOVE_ITERATE_0TO7(BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE) #undef BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE #endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template std::pair insert_or_assign(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(M) obj) { const key_type& k = key; std::pair ret; insert_commit_data data; ret.second = hint == const_iterator() ? this->priv_insert_unique_prepare(k, data) : this->priv_insert_unique_prepare(hint, k, data); if(!ret.second){ ret.first = this->nth(data.position - this->cbegin()); ret.first->second = boost::forward(obj); } else{ typedef typename emplace_functor_type::type func_t; typedef emplace_iterator it_t; func_t func(boost::forward(key), boost::forward(obj)); ret.first = this->m_data.m_seq.insert(data.position, it_t(func), it_t()); } return ret; } BOOST_CONTAINER_FORCEINLINE iterator erase(const_iterator position) { return this->m_data.m_seq.erase(position); } size_type erase(const key_type& k) { std::pair itp = this->equal_range(k); size_type ret = static_cast(itp.second-itp.first); if (ret){ this->m_data.m_seq.erase(itp.first, itp.second); } return ret; } BOOST_CONTAINER_FORCEINLINE iterator erase(const_iterator first, const_iterator last) { return this->m_data.m_seq.erase(first, last); } BOOST_CONTAINER_FORCEINLINE void clear() { this->m_data.m_seq.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). BOOST_CONTAINER_FORCEINLINE void shrink_to_fit() { this->m_data.m_seq.shrink_to_fit(); } BOOST_CONTAINER_FORCEINLINE iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW { const bool value = boost::container::dtl:: has_member_function_callable_with_nth::value; return flat_tree_nth(this->m_data.m_seq, n, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW { const bool value = boost::container::dtl:: has_member_function_callable_with_nth::value; return flat_tree_nth(this->m_data.m_seq, n, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW { const bool value = boost::container::dtl:: has_member_function_callable_with_index_of::value; return flat_tree_index_of(this->m_data.m_seq, p, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW { const bool value = boost::container::dtl:: has_member_function_callable_with_index_of::value; return flat_tree_index_of(this->m_data.m_seq, p, dtl::bool_()); } // set operations: iterator find(const key_type& k) { iterator i = this->lower_bound(k); iterator end_it = this->end(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } const_iterator find(const key_type& k) const { const_iterator i = this->lower_bound(k); const_iterator end_it = this->cend(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } template typename dtl::enable_if_transparent::type find(const K& k) { iterator i = this->lower_bound(k); iterator end_it = this->end(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } template typename dtl::enable_if_transparent::type find(const K& k) const { const_iterator i = this->lower_bound(k); const_iterator end_it = this->cend(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } size_type count(const key_type& k) const { std::pair p = this->equal_range(k); size_type n = p.second - p.first; return n; } template typename dtl::enable_if_transparent::type count(const K& k) const { std::pair p = this->equal_range(k); size_type n = p.second - p.first; return n; } BOOST_CONTAINER_FORCEINLINE bool contains(const key_type& x) const { return this->find(x) != this->cend(); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent::type contains(const K& x) const { return this->find(x) != this->cend(); } template BOOST_CONTAINER_FORCEINLINE void merge_unique(flat_tree& source) { this->insert( boost::make_move_iterator(source.begin()) , boost::make_move_iterator(source.end())); } template BOOST_CONTAINER_FORCEINLINE void merge_equal(flat_tree& source) { this->insert( boost::make_move_iterator(source.begin()) , boost::make_move_iterator(source.end())); } BOOST_CONTAINER_FORCEINLINE void merge_unique(flat_tree& source) { const bool value = boost::container::dtl:: has_member_function_callable_with_merge_unique::value; (flat_tree_merge_unique) ( this->m_data.m_seq , boost::make_move_iterator(source.m_data.m_seq.begin()) , boost::make_move_iterator(source.m_data.m_seq.end()) , this->priv_value_comp() , dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE void merge_equal(flat_tree& source) { const bool value = boost::container::dtl:: has_member_function_callable_with_merge::value; (flat_tree_merge_equal) ( this->m_data.m_seq , boost::make_move_iterator(source.m_data.m_seq.begin()) , boost::make_move_iterator(source.m_data.m_seq.end()) , this->priv_value_comp() , dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE iterator lower_bound(const key_type& k) { return this->priv_lower_bound(this->begin(), this->end(), k); } BOOST_CONTAINER_FORCEINLINE const_iterator lower_bound(const key_type& k) const { return this->priv_lower_bound(this->cbegin(), this->cend(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent::type lower_bound(const K& k) { return this->priv_lower_bound(this->begin(), this->end(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent::type lower_bound(const K& k) const { return this->priv_lower_bound(this->cbegin(), this->cend(), k); } BOOST_CONTAINER_FORCEINLINE iterator upper_bound(const key_type& k) { return this->priv_upper_bound(this->begin(), this->end(), k); } BOOST_CONTAINER_FORCEINLINE const_iterator upper_bound(const key_type& k) const { return this->priv_upper_bound(this->cbegin(), this->cend(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent::type upper_bound(const K& k) { return this->priv_upper_bound(this->begin(), this->end(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent::type upper_bound(const K& k) const { return this->priv_upper_bound(this->cbegin(), this->cend(), k); } BOOST_CONTAINER_FORCEINLINE std::pair equal_range(const key_type& k) { return this->priv_equal_range(this->begin(), this->end(), k); } BOOST_CONTAINER_FORCEINLINE std::pair equal_range(const key_type& k) const { return this->priv_equal_range(this->cbegin(), this->cend(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent >::type equal_range(const K& k) { return this->priv_equal_range(this->begin(), this->end(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent >::type equal_range(const K& k) const { return this->priv_equal_range(this->cbegin(), this->cend(), k); } BOOST_CONTAINER_FORCEINLINE std::pair lower_bound_range(const key_type& k) { return this->priv_lower_bound_range(this->begin(), this->end(), k); } BOOST_CONTAINER_FORCEINLINE std::pair lower_bound_range(const key_type& k) const { return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent >::type lower_bound_range(const K& k) { return this->priv_lower_bound_range(this->begin(), this->end(), k); } template BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_transparent >::type lower_bound_range(const K& k) const { return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); } BOOST_CONTAINER_FORCEINLINE size_type capacity() const { const bool value = boost::container::dtl:: has_member_function_callable_with_capacity::value; return (flat_tree_capacity)(this->m_data.m_seq, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE void reserve(size_type cnt) { const bool value = boost::container::dtl:: has_member_function_callable_with_reserve::value; (flat_tree_reserve)(this->m_data.m_seq, cnt, dtl::bool_()); } BOOST_CONTAINER_FORCEINLINE container_type extract_sequence() { return boost::move(m_data.m_seq); } BOOST_CONTAINER_FORCEINLINE container_type &get_sequence_ref() { return m_data.m_seq; } BOOST_CONTAINER_FORCEINLINE void adopt_sequence_equal(BOOST_RV_REF(container_type) seq) { (flat_tree_adopt_sequence_equal)( m_data.m_seq, boost::move(seq), this->priv_value_comp() , dtl::bool_::value>()); } BOOST_CONTAINER_FORCEINLINE void adopt_sequence_unique(BOOST_RV_REF(container_type) seq) { (flat_tree_adopt_sequence_unique)(m_data.m_seq, boost::move(seq), this->priv_value_comp() , dtl::bool_::value>()); } void adopt_sequence_equal(ordered_range_t, BOOST_RV_REF(container_type) seq) { BOOST_ASSERT((is_sorted)(seq.cbegin(), seq.cend(), this->priv_value_comp())); m_data.m_seq = boost::move(seq); } void adopt_sequence_unique(ordered_unique_range_t, BOOST_RV_REF(container_type) seq) { BOOST_ASSERT((is_sorted_and_unique)(seq.cbegin(), seq.cend(), this->priv_value_comp())); m_data.m_seq = boost::move(seq); } BOOST_CONTAINER_FORCEINLINE friend bool operator==(const flat_tree& x, const flat_tree& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } BOOST_CONTAINER_FORCEINLINE friend bool operator<(const flat_tree& x, const flat_tree& y) { return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const flat_tree& x, const flat_tree& y) { return !(x == y); } BOOST_CONTAINER_FORCEINLINE friend bool operator>(const flat_tree& x, const flat_tree& y) { return y < x; } BOOST_CONTAINER_FORCEINLINE friend bool operator<=(const flat_tree& x, const flat_tree& y) { return !(y < x); } BOOST_CONTAINER_FORCEINLINE friend bool operator>=(const flat_tree& x, const flat_tree& y) { return !(x < y); } BOOST_CONTAINER_FORCEINLINE friend void swap(flat_tree& x, flat_tree& y) { x.swap(y); } private: template void priv_range_insertion_construct( bool unique_insertion, InputIterator first, InputIterator last) { //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor //Call end() every iteration as reallocation might have invalidated iterators if(unique_insertion){ this->insert_unique(first, last); } else{ this->insert_equal (first, last); } } BOOST_CONTAINER_FORCEINLINE bool priv_in_range_or_end(const_iterator pos) const { return (this->begin() <= pos) && (pos <= this->end()); } // insert/erase void priv_insert_equal_prepare (const_iterator pos, const value_type& val, insert_commit_data &data) { // N1780 // To insert val at pos: // if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) // else // insert val before lower_bound(val) const value_compare &val_cmp = this->m_data; if(pos == this->cend() || !val_cmp(*pos, val)){ if (pos == this->cbegin() || !val_cmp(val, pos[-1])){ data.position = pos; } else{ data.position = this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val)); } } else{ data.position = this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val)); } } bool priv_insert_unique_prepare (const_iterator b, const_iterator e, const key_type& k, insert_commit_data &commit_data) { const key_compare &key_cmp = this->priv_key_comp(); commit_data.position = this->priv_lower_bound(b, e, k); return commit_data.position == e || key_cmp(k, KeyOfValue()(*commit_data.position)); } BOOST_CONTAINER_FORCEINLINE bool priv_insert_unique_prepare (const key_type& k, insert_commit_data &commit_data) { return this->priv_insert_unique_prepare(this->cbegin(), this->cend(), k, commit_data); } bool priv_insert_unique_prepare (const_iterator pos, const key_type& k, insert_commit_data &commit_data) { //N1780. Props to Howard Hinnant! //To insert k at pos: //if pos == end || k <= *pos // if pos == begin || k >= *(pos-1) // insert k before pos // else // insert k before upper_bound(k) //else if pos+1 == end || k <= *(pos+1) // insert k after pos //else // insert k before lower_bound(k) const key_compare &key_cmp = this->priv_key_comp(); const const_iterator cend_it = this->cend(); if(pos == cend_it || key_cmp(k, KeyOfValue()(*pos))){ //Check if k should go before end const const_iterator cbeg = this->cbegin(); commit_data.position = pos; if(pos == cbeg){ //If container is empty then insert it in the beginning return true; } const_iterator prev(pos); --prev; if(key_cmp(KeyOfValue()(*prev), k)){ //If previous element was less, then it should go between prev and pos return true; } else if(!key_cmp(k, KeyOfValue()(*prev))){ //If previous was equal then insertion should fail commit_data.position = prev; return false; } else{ //Previous was bigger so insertion hint was pointless, dispatch to hintless insertion //but reduce the search between beg and prev as prev is bigger than k return this->priv_insert_unique_prepare(cbeg, prev, k, commit_data); } } else{ //The hint is before the insertion position, so insert it //in the remaining range [pos, end) return this->priv_insert_unique_prepare(pos, cend_it, k, commit_data); } } template BOOST_CONTAINER_FORCEINLINE iterator priv_insert_commit (insert_commit_data &commit_data, BOOST_FWD_REF(Convertible) convertible) { return this->m_data.m_seq.insert ( commit_data.position , boost::forward(convertible)); } template RanIt priv_lower_bound(RanIt first, const RanIt last, const K & key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key_extract(*middle), key)) { first = ++middle; len -= step + 1; } else{ len = step; } } return first; } template RanIt priv_upper_bound (RanIt first, const RanIt last,const K & key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key, key_extract(*middle))) { len = step; } else{ first = ++middle; len -= step + 1; } } return first; } template std::pair priv_equal_range(RanIt first, RanIt last, const K& key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key_extract(*middle), key)){ first = ++middle; len -= step + 1; } else if (key_cmp(key, key_extract(*middle))){ len = step; } else { //Middle is equal to key last = first; last += len; RanIt const first_ret = this->priv_lower_bound(first, middle, key); return std::pair ( first_ret, this->priv_upper_bound(++middle, last, key)); } } return std::pair(first, first); } template std::pair priv_lower_bound_range(RanIt first, RanIt last, const K& k) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; RanIt lb(this->priv_lower_bound(first, last, k)), ub(lb); if(lb != last && static_cast(!key_cmp(k, key_extract(*lb)))){ ++ub; } return std::pair(lb, ub); } }; } //namespace dtl { } //namespace container { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { typedef typename boost::container::dtl::select_container_type::type container_type; typedef typename container_type::allocator_type allocator_t; typedef typename ::boost::container::allocator_traits::pointer pointer; static const bool value = ::boost::has_trivial_destructor_after_move::value && ::boost::has_trivial_destructor_after_move::value; }; } //namespace boost { #include #endif // BOOST_CONTAINER_FLAT_TREE_HPP