# bio-vcf [![Build Status](https://secure.travis-ci.org/pjotrp/bioruby-vcf.png)](http://travis-ci.org/pjotrp/bioruby-vcf) Yet another VCF parser. Bio-vcf is not only fast for genome-wide data, it also comes with a really nice filtering, evaluation and rewrite language. Bio-vcf has better performance than other tools because of lazy parsing, multi-threading, and useful combinations of (fancy) command line filtering. For example on an 2 core machine bio-vcf is 50% faster than SnpSift. On an 8 core machine bio-vcf is 3x faster than SnpSift. Parsing a 1 Gb ESP VCF with 8 cores with bio-vcf takes ```sh time ./bin/bio-vcf -iv --num-threads 8 --filter 'r.info.cp>0.3' < ESP6500SI_V2_SSA137.vcf > test1.vcf real 0m21.095s user 1m41.101s sys 0m7.852s ``` and parsing with SnpSift takes ```sh time cat ESP6500SI_V2_SSA137.vcf |java -jar snpEff/SnpSift.jar filter "( CP>0.3 )" > test.vcf real 1m4.913s user 0m58.071s sys 0m7.982s ``` Bio-vcf is perfect for parsing large data files. Parsing a 650 Mb GATK Illumina Hiseq VCF file and evaluating the results into a BED format on a 16 core machine takes ```sh time bio-vcf --num-threads 36 --filter 'r.chrom.to_i>0 and r.chrom.to_i<21 and r.qual>50' --sfilter '!s.empty? and s.dp>20' --eval '[r.chrom,r.pos,r.pos+1]' < test.large2.vcf > test.out.3 real 0m47.612s user 8m18.234s sys 0m5.039s ``` which shows some pretty decent core utilisation (10x). Use zcat to pipe gzipped (vcf.gz) files into bio-vcf, e.g. ```sh zcat huge_file.vcf.gz| bio-vcf --num-threads 36 --filter 'r.chrom.to_i>0 and r.chrom.to_i<21 and r.qual>50' --sfilter '!s.empty? and s.dp>20' --eval '[r.chrom,r.pos,r.pos+1]' > test.bed ``` bio-vcf comes with a sensible parser definition language (it is 100% Ruby), as well as primitives for set analysis. Few assumptions are made about the actual contents of the VCF file (field names are resolved on the fly), so bio-vcf should practically work with all VCF files. To fetch all entries where all samples have depth larger than 20 use a sample filter ```ruby bio-vcf --sfilter 'sample.dp>20' < file.vcf ``` To only filter on some samples number 0 and 3: ```ruby bio-vcf --sfilter-samples 0,3 --sfilter 's.dp>20' < file.vcf ``` Where 's.dp' is the shorter name for 'sample.dp'. It is also possible to specify sample names, or info fields: For example, to filter somatic data ```ruby bio-vcf --filter 'rec.info.dp>5 and rec.alt.size==1 and rec.tumor.bq[rec.alt]>30 and rec.tumor.mq>20' < file.vcf ``` To output specific fields in tabular (and HTML, XML or LaTeX) format use the --eval switch, e.g., ```ruby bio-vcf --eval 'rec.alt+"\t"+rec.info.dp+"\t"+rec.tumor.gq.to_s' < file.vcf ``` In fact, if the result is an Array the output gets tab dilimited, so the nicer version is ```ruby bio-vcf --eval '[r.alt,r.info.dp,r.tumor.gq.to_s]' < file.vcf ``` To output the DP values of every sample that has a depth larger than 100: ```ruby bio-vcf -i --sfilter 's.dp>100' --seval 's.dp' < file.vcf 1 10257 159 242 249 249 186 212 218 1 10291 165 249 249 247 161 163 189 1 10297 182 246 250 246 165 158 183 1 10303 198 247 248 248 172 157 182 (etc.) ``` Where -i ignores missing samples. Pick up sample allele depth ```ruby bio-vcf -i --seval 's.ad.to_s' 1 10257 [151, 8] [219, 22] [227, 22] [226, 22] [166, 18] [185, 27] [201, 15] 1 10291 [145, 16] [218, 26] [214, 30] [213, 32] [122, 36] [131, 27] [156, 31] 1 10297 [155, 18] [218, 23] [219, 26] [207, 30] [137, 20] [124, 27] [151, 27] 1 10303 [169, 25] [211, 31] [214, 28] [214, 32] [146, 17] [123, 23] [156, 22] ``` To get the alt depth per sample ```ruby bio-vcf -i --seval 's.ad[1]' 1 10257 8 22 22 22 18 27 15 1 10291 16 26 30 32 36 27 31 1 10297 18 23 26 30 20 27 27 1 10303 25 31 28 32 17 23 22 ``` To calculate alt frequencies from s.ad which is sample (alt dp)/(ref dp + alt dp) ```ruby bio-vcf -i --seval 's.ad[1].to_f/(s.ad[0]+s.ad[1])' 1 10257 0.050314465408805034 0.0912863070539419 0.08835341365461848 0.088709677419354840.09782608695652174 0.12735849056603774 0.06944444444444445 1 10291 0.09937888198757763 0.10655737704918032 0.12295081967213115 0.1306122448979592 0.22784810126582278 0.17088607594936708 0.1657754010695187 ``` note the floating point conversion .to_f is needed, otherwise you get an integer division. To account for multiple alleles ```ruby bio-vcf -i --eval 'r.ref+">"+r.alt[0]' --seval 'tot=s.ad.reduce(:+) ; (tot-s.ad[0].to_f)/tot' --set-header "mutation,#samples" mutation Original s1t1 s2t1 s3t1 s1t2 s2t2 s3t2 A>C 0.050314465408805034 0.0912863070539419 0.08835341365461848 0.08870967741935484 0.09782608695652174 0.12735849056603774 0.06944444444444445 C>T 0.09937888198757763 0.10655737704918032 0.12295081967213115 0.1306122448979592 0.22784810126582278 0.17088607594936708 0.1657754010695187 ``` To output DP ang GQ values for tumor normal: ```ruby bio-vcf --filter 'r.normal.dp>=7 and r.tumor.dp>=5' --seval '[s.dp,s.gq]' < freebayes.vcf 17 45235620 22 139.35 20 0 17 45235635 20 137.224 14 41.5688 17 45235653 18 146.509 12 146.509 17 45247354 32 0 9 6.59312 17 45247362 27 0 6 110.097 ``` To parse and output genotype ```ruby bio-vcf -iq --sfilter 's.dp>=20 and s.gq>=20' --ifilter-samples 's.gt!="0/0"' --seval s.gt < test/data/input/multisample.vcf 1 10257 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1 10291 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 10297 0/1 0/1 0/1 0/0 0/0 0/1 0/1 1 12783 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ``` And use --set-header if you want to add a header ```ruby bio-vcf -iq --set-header 'chr,pos,#samples' --sfilter 's.dp>=20 and s.gq>=20' --ifilter-samples 's.gt!="0/0"' --seval s.gt < test/data/input/multisample.vcf chr pos orig s1t1 s2t1 s3t1 s1t2 s2t2 s3t2 1 10257 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1 10291 0/1 0/1 0/1 0/1 0/1 0/1 0/1 (etc) ``` where #samples gets expanded. Most filter and eval commands can be used at the same time. Special set commands exit for filtering and eval. When a set is defined, based on the sample name, you can apply filters on the samples inside the set, outside the set and over all samples. E.g. Also note you can use [bio-table](https://github.com/pjotrp/bioruby-table) to filter/transform data further and convert to other formats, such as RDF. The VCF format is commonly used for variant calling between NGS samples. The fast parser needs to carry some state, recorded for each file in VcfHeader, which contains the VCF file header. Individual lines (variant calls) first go through a raw parser returning an array of fields. Further (lazy) parsing is handled through VcfRecord. At this point the filter is pretty generic with multi-sample support. If something is not working, check out the feature descriptions and the source code. It is not hard to add features. Otherwise, send a short example of a VCF statement you need to work on. ## Installation Note that you need Ruby 1.9.3 or later. The 2.x Ruby series also give a performance improvement. Bio-vcf will show the Ruby version when typing the command 'bio-vcf -h'. To intall bio-vcf with gem: ```sh gem install bio-vcf bio-vcf -h ``` ## Command line interface (CLI) Get the version of the VCF file ```ruby bio-vcf -q --eval-once header.version < file.vcf 4.1 ``` Get the column headers ```ruby bio-vcf -q --eval-once 'header.column_names.join(",")' < file.vcf CHROM,POS,ID,REF,ALT,QUAL,FILTER,INFO,FORMAT,NORMAL,TUMOR ``` Get the sample names ```ruby bio-vcf -q --eval-once 'header.samples.join(",")' < file.vcf NORMAL,TUMOR ``` The 'fields' array contains unprocessed data (strings). Print first five raw fields ```ruby bio-vcf --eval 'fields[0..4]' < file.vcf ``` Add a filter to display the fields on chromosome 12 ```ruby bio-vcf --filter 'fields[0]=="12"' --eval 'fields[0..4]' < file.vcf ``` It gets better when we start using processed data, represented by an object named 'rec'. Position is a value, so we can filter a range ```ruby bio-vcf --filter 'rec.chrom=="12" and rec.pos>96_641_270 and rec.pos<96_641_276' < file.vcf ``` The shorter name for 'rec.chrom' is 'r.chrom', so you may write ```ruby bio-vcf --filter 'r.chrom=="12" and r.pos>96_641_270 and r.pos<96_641_276' < file.vcf ``` To ignore and continue parsing on missing data use the --ignore-missing (-i) and or --quiet (-q) switches ```ruby bio-vcf -i --filter 'r.chrom=="12" and r.pos>96_641_270 and r.pos<96_641_276' < file.vcf ``` Info fields are referenced by ```ruby bio-vcf --filter 'rec.info.dp>100 and rec.info.readposranksum<=0.815' < file.vcf ``` With subfields defined by rec.format ```ruby bio-vcf --filter 'rec.tumor.ss != 2' < file.vcf ``` Output ```ruby bio-vcf --filter 'rec.tumor.gq>30' --eval '[rec.ref,rec.alt,rec.tumor.bcount,rec.tumor.gq,rec.normal.gq]' < file.vcf ``` Show the count of the bases that were scored as somatic ```ruby bio-vcf --eval 'rec.alt+"\t"+rec.tumor.bcount.split(",")[["A","C","G","T"].index(rec.alt)]+ "\t"+rec.tumor.gq.to_s' < file.vcf ``` Actually, we have a convenience implementation for bcount, so this is the same ```ruby bio-vcf --eval 'rec.alt+"\t"+rec.tumor.bcount[rec.alt].to_s+"\t"+rec.tumor.gq.to_s' < file.vcf ``` Filter on the somatic results that were scored at least 4 times ```ruby bio-vcf --filter 'rec.alt.size==1 and rec.tumor.bcount[rec.alt]>4' < test.vcf ``` Similar for base quality scores ```ruby bio-vcf --filter 'rec.alt.size==1 and rec.tumor.amq[rec.alt]>30' < test.vcf ``` Filter out on sample values ```ruby bio-vcf --sfilter 's.dp>20' < test.vcf ``` To filter missing on samples: ```sh bio-vcf --filter "rec.s3t2?" < file.vcf ``` or for all ```sh bio-vcf --filter "rec.missing_samples?" < file.vcf ``` Likewise you can check for record validity ```sh bio-vcf --filter "not rec.valid?" < file.vcf ``` which, at this point, simply counts the number of fields. If your samples have other names you can fetch genotypes for that sample with ```sh bio-vcf --eval "rec.sample['Original'].gt" < file.vcf ``` Or read depth for another ```sh bio-vcf --eval "rec.sample['s3t2'].dp" < file.vcf ``` Better even, you can access samples directly with ```sh bio-vcf --eval "rec.sample.original.gt" < file.vcf bio-vcf --eval "rec.sample.s3t2.dp" < file.vcf ``` And even better because of Ruby magic ```sh bio-vcf --eval "rec.original.gt" < file.vcf bio-vcf --eval "rec.s3t2.dp" < file.vcf ``` Note that only valid method names in lower case get picked up this way. Also by convention normal is sample 1 and tumor is sample 2. Even shorter r is an alias for rec (nyi) ```sh bio-vcf --eval "r.original.gt" < file.vcf bio-vcf --eval "r.s3t2.dp" < file.vcf ``` ## Special functions Note: special functions are not yet implemented! Sometime you want to use a special function in a filter. For example percentage variant reads can be defined as [a,c,g,t] with frequencies against sample read depth (dp) as [0,0.03,0.47,0.50]. Filtering would with a special function, which we named freq ```sh bio-vcf --sfilter "s.freq(2)>0.30" < file.vcf ``` which is equal to ```sh bio-vcf --sfilter "s.freq.g>0.30" < file.vcf ``` To check for ref or variant frequencies use more sugar ```sh bio-vcf --sfilter "s.freq.var>0.30 and s.freq.ref<0.10" < file.vcf ``` For all includes var should be identical for set analysis except for cartesian. So when --include is defined test for identical var and in the case of cartesian one unique var, when tested. ref should always be identical across samples. ## DbSNP One clinical variant DbSNP example ```sh bio-vcf --eval '[rec.id,rec.chr,rec.pos,rec.alt,rec.info.sao,rec.info.CLNDBN]' < clinvar_20140303.vcf ``` renders ``` 1 1916905 rs267598254 A 3 Malignant_melanoma 1 1916906 rs267598255 A 3 Malignant_melanoma 1 1959075 rs121434580 C 1 Generalized_epilepsy_with_febrile_seizures_plus_type_5 1 1959699 rs41307846 A 1 Generalized_epilepsy_with_febrile_seizures_plus_type_5|Epilepsy\x2c_juvenile_myoclonic_7|Epilepsy\x2c_idiopathic_generalized_10 1 1961453 rs142619552 T 3 Malignant_melanoma 1 2160299 rs387907304 G 0 Shprintzen-Goldberg_syndrome 1 2160305 rs387907306 A T 0 Shprintzen-Goldberg_syndrome,Shprintzen-Goldberg_syndrome 1 2160306 rs387907305 A T 0 Shprintzen-Goldberg_syndrome,Shprintzen-Goldberg_syndrome 1 2160308 rs397514590 T 0 Shprintzen-Goldberg_syndrome 1 2160309 rs397514589 A 0 Shprintzen-Goldberg_syndrome ``` ## Set analysis bio-vcf allows for set analysis. With the complement filter, for example, samples are selected that evaluate to true, all others should evaluate to false. For this we create three filters, one for all samples that are included (the --ifilter or -if), for all samples that are excluded (the --efilter or -ef) and for any sample (the --sfilter or -sf). So i=include, e=exclude and s=any sample. The equivalent of the union filter is by using the --sfilter, so ```sh bio-vcf --sfilter 's.dp>20' ``` Filters DP on all samples. To filter on a subset you can add a selector ```sh bio-vcf --sfilter-samples 0,1,4 --sfilter 's.dp>20' ``` For set analysis there are the additional ifilter (include) and efilter (exclude). To filter on samples 0,1,4 and output the gq values ```sh bio-vcf -i --ifilter-samples 0,1,4 --ifilter 's.gq<10 or s.gq==99' --seval s.gq 1 14907 99 99 99 99 99 99 99 1 14930 99 99 99 99 99 99 99 1 14933 1 99 99 39 99 99 99 1 15190 99 99 91 99 99 99 99 1 15211 99 99 99 99 99 99 99 ``` The equivalent of the complement filter is by specifying what samples to include, here with a regex and define filters on the included and excluded samples (the ones not in ifilter-samples) and the ```sh ./bin/bio-vcf -i --sfilter 's.dp>20' --ifilter-samples 2,4 --ifilter 's.gt==r.s1t1.gt' ``` To print out the GT's add --seval ```sh bio-vcf -i --sfilter 's.dp>20' --ifilter-samples 2,4 --ifilter 's.gt==r.s1t1.gt' --seval 's.gt' 1 14673 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 14907 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 14930 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 15211 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 15274 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 16103 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ``` To set an additional filter on the excluded samples: ```sh bio-vcf -i --ifilter-samples 0,1,4 --ifilter 's.gt==rec.s1t1.gt and s.gq>10' --seval s.gq --efilter 's.gq==99' ``` Etc. etc. Any combination of sfilter, ifilter and efilter is possible. The following are not yet implemented: In the near future it is also possible to select samples on a regex (here select all samples where the name starts with s3) ```sh bio-vcf --isample-regex '/^s3/' --ifilter 's.dp>20' ``` ```sh bio-vcf --include /s3.+/ --sfilter 'dp>20' --ifilter 'gt==s3t1.gt' --efilter 'gt!=s3t1.gt' --set-intersect include=true bio-vcf --include /s3.+/ --sample-regex /^t2/ --sfilter 'dp>20' --ifilter 'gt==s3t1.gt' --set-catesian one in include=true, rest=false bio-vcf --unique-sample (any) --include /s3.+/ --sfilter 'dp>20' --ifilter 'gt!="0/0"' ``` With the filter commands you can use --ignore-missing to skip errors. ## Genotype processing The sample GT field counts 0 as the reference and numbers >1 as indexed ALT values. The field is simply built up using a slash or | as a separator (e.g., 0/1, 0|2, ./. are valid values). The standard field results in a string value ```ruby bio-vcf --seval s.gt 1 10665 ./. ./. 0/1 0/1 ./. 0/0 0/0 1 10694 ./. ./. 1/1 1/1 ./. ./. ./. 1 12783 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1 15274 1/2 1/2 1/2 1/2 1/2 1/2 1/2 ``` to access components of the genotype field we can use standard Ruby ```ruby bio-vcf --seval 's.gt.split(/\//)[0]' 1 10665 . . 0 0 . 0 0 1 10694 . . 1 1 . . . 1 12783 0 0 0 0 0 0 0 1 15274 1 1 1 1 1 1 1 ``` or special functions, such as 'gti' which gives the genotype as an indexed value array ```ruby bio-vcf --seval 's.gti[0]' 1 10665 0 0 0 0 1 10694 1 1 1 12783 0 0 0 0 0 0 0 1 15274 1 1 1 1 1 1 1 ``` and 'gts' as a nucleotide string array ```ruby bio-vcf --seval 's.gts[0]' 1 10665 C C C C 1 10694 G G 1 12783 G G G G G G G 1 15274 G G G G G G G ``` These values can also be used in filters and output allele depth, for example ```ruby bio-vcf -vi --ifilter 'rec.original.gt!="0/1"' --efilter 'rec.original.gt=="0/0"' --seval 'rec.original.ad[s.gti[1]]' 1 10257 151 151 151 151 151 8 151 1 13302 26 10 10 10 10 10 10 1 13757 47 47 4 47 47 4 47 ``` The following does not yet work (using the gti in a sample directly) ```ruby bio-vcf -vi --ifilter 'rec.original.gt!="0/1"' --efilter 'rec.original.gti[0]==0' --seval 'rec.original.ad[s.gti[1]]' ``` ## Modify VCF files Add or modify the sample file name in the INFO fields: ```sh bio-vcf --rewrite 'rec.info["sample"]="mytest"' < mytest.vcf ``` To remove/select 3 samples and create a new file: ```sh bio-vcf --samples 0,1,3 < mytest.vcf ``` ## RDF output You can use --rdf for turtle RDF output, note the use of --id and --tags which includes the MAF record: ```ruby bio-vcf --id evs --rdf --tags '{"db:evs" => true, "seq:freq" => rec.info.maf[0]/100 }' < EVS.vcf :evs_ch9_139266496_T seq:chr "9" . :evs_ch9_139266496_T seq:pos 139266496 . :evs_ch9_139266496_T seq:alt T . :evs_ch9_139266496_T db:vcf true . :evs_ch9_139266496_T db:evs true . :evs_ch9_139266496_T seq:freq 0.419801 . ``` It is possible to filter too! Pick out the rare variants with ```ruby bio-vcf --id evs --filter 'r.info.maf[0]<5.0' --rdf --tags '{"db:evs" => true, "seq:freq" => rec.info.maf[0]/100 }' < EVS.vcf ``` Similarly for GoNL ```ruby bio-vcf --id gonl --rdf --tags '{"db:evs" => true, "seq:freq" => rec.info.af }' < GoNL.vcf ``` Also check out [bio-table](https://github.com/pjotrp/bioruby-table) to convert tabular data to RDF. ## Other examples For more examples see the feature [section](https://github.com/pjotrp/bioruby-vcf/tree/master/features). ## API BioVcf can also be used as an API. The following code is basically what the command line interface uses (see ./bin/bio-vcf) ```ruby FILE.each_line do | line | if line =~ /^##fileformat=/ # ---- We have a new file header header = VcfHeader.new header.add(line) STDIN.each_line do | headerline | if headerline !~ /^#/ line = headerline break # end of header end header.add(headerline) end end # ---- Parse VCF record line # fields = VcfLine.parse(line,header.columns) fields = VcfLine.parse(line) rec = VcfRecord.new(fields,header) # # Do something with rec # end ``` ## Trouble shooting The multi-threading creates temporary files using the system TMPDIR. This behaviour can be overridden by setting the environment variable. Also, for genome-wide sequencing it may be useful to increase --thread-lines to a value larger than 1_000_000. ## Project home page Information on the source tree, documentation, examples, issues and how to contribute, see http://github.com/pjotrp/bioruby-vcf ## Cite If you use this software, please cite one of * [BioRuby: bioinformatics software for the Ruby programming language](http://dx.doi.org/10.1093/bioinformatics/btq475) * [Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics](http://dx.doi.org/10.1093/bioinformatics/bts080) ## Biogems.info This Biogem is published at (http://biogems.info/index.html#bio-vcf) ## Copyright Copyright (c) 2014 Pjotr Prins. See LICENSE.txt for further details.