# -*- coding: utf-8 -*- ########################################################################################## # Copyright © 2013 Rodrigo Botafogo. All Rights Reserved. Permission to use, copy, modify, # and distribute this software and its documentation, without fee and without a signed # licensing agreement, is hereby granted, provided that the above copyright notice, this # paragraph and the following two paragraphs appear in all copies, modifications, and # distributions. # # IN NO EVENT SHALL RODRIGO BOTAFOGO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF # THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF RODRIGO BOTAFOGO HAS BEEN ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # RODRIGO BOTAFOGO SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE # SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". # RODRIGO BOTAFOGO HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, # OR MODIFICATIONS. ########################################################################################## require 'rubygems' require "test/unit" require 'shoulda' require 'env' require 'scicom' class SciComTest < Test::Unit::TestCase context "R environment" do #-------------------------------------------------------------------------------------- # #-------------------------------------------------------------------------------------- setup do end #-------------------------------------------------------------------------------------- # #-------------------------------------------------------------------------------------- should "download the proper package" do R.install__package("AssetPricing") R.library("AssetPricing") R.install__package("AppliedPredictiveModeling") R.library("AppliedPredictiveModeling") ### Section 3.1 Case Study: Cell Segmentation in High-Content Screening R.data('segmentationOriginal') seg = R.segmentationOriginal segTrain = seg.subset(Case: "Train") segTrainX = segTrain[true, -(1..3)] segTrainClass = segTrain.Class segTrainClass.pp end end end