module Statsample module Factor class PrincipalAxis MIN_CHANGE_ESTIMATE=0.0001 include GetText bindtextdomain("statsample") attr_accessor :m, :name attr_reader :iterations, :initial_eigenvalues def initialize(matrix ,opts=Hash.new) @matrix=matrix @name="" @m=nil opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k } @clean=true end def communality(m) if m!=@m or @clean iterate(m) raise "Can't calculate comunnality" if @communality.nil? end @communality end def component_matrix(m) if m!=@m or @clean iterate(m) end @component_matrix end def iterate(m, t=25) @clean=false @m=m work_matrix=@matrix.to_a prev_com=initial_communalities pca=PCA.new(::Matrix.rows(work_matrix)) @initial_eigenvalues=pca.eigenvalues @iterations=0 t.times do |i| @iterations+=1 prev_com.each_with_index{|v,i| work_matrix[i][i]=v } pca=Statsample::PCA.new(::Matrix.rows(work_matrix)) @communality=pca.communality(m) jump=true @communality.each_with_index do |v2,i2| raise "Variable #{i2} with communality > 1" if v2>1.0 #p (v2-prev_com[i2]).abs jump=false if (v2-prev_com[i2]).abs>=MIN_CHANGE_ESTIMATE end break if jump prev_com=@communality end @component_matrix=pca.component_matrix(m) end def initial_communalities if @initial_communalities.nil? @initial_communalities=@matrix.column_size.times.collect {|i| rxx , rxy = FactorialAnalysis.separate_matrices(@matrix,i) matrix=(rxy.t*rxx.inverse*rxy) matrix[0,0] } end @initial_communalities end # Returns two matrixes from a correlation matrix # with regressors correlation matrix and criteria xy # matrix. def self.separate_matrices(matrix, y) ac=[] matrix.column_size.times do |i| ac.push(matrix[y,i]) if i!=y end rxy=Matrix.columns([ac]) rows=[] matrix.row_size.times do |i| if i!=y row=[] matrix.row_size.times do |j| row.push(matrix[i,j]) if j!=y end rows.push(row) end end rxx=Matrix.rows(rows) [rxx,rxy] end def to_reportbuilder(generator) anchor=generator.add_toc_entry(_("Factor Analysis: ")+name) generator.add_html "