// Copyright (C) 2015 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include <dlib/matrix.h> #include <sstream> #include <string> #include <cstdlib> #include <ctime> #include <vector> #include "../dnn/cublas_dlibapi.h" #include "tester.h" // We only do these tests if CUDA is available to test in the first place. #ifdef DLIB_USE_CUDA namespace { using namespace test; using namespace dlib; using namespace std; logger dlog("test.cublas"); class cublas_tester : public tester { public: cublas_tester ( ) : tester ("test_cublas", "Runs tests on the cuBLAS bindings.") {} void perform_test ( ) { { resizable_tensor a(4,3), b(3,4), c(3,3); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+trans(mat(a))*trans(mat(b)); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); cuda::gemm(2, c, 1, a, true, b, true); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(4,3), b(4,3), c(3,3); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+trans(mat(a))*mat(b); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); cuda::gemm(2, c, 1, a, true, b, false); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(3,4), b(3,4), c(3,3); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+mat(a)*trans(mat(b)); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); cuda::gemm(2, c, 1, a, false, b, true); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(3,4), b(3,4), c(3,3); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = mat(c)+mat(a)*trans(mat(b)); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); cuda::gemm(1, c, 1, a, false, b, true); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(3,4), b(4,3), c(3,3); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+mat(a)*mat(b); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); cuda::gemm(2, c, 1, a, false, b, false); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(3,4), b(4,3), c(3,3); c = std::numeric_limits<float>::infinity(); a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); a.async_copy_to_device(); b.async_copy_to_device(); c.async_copy_to_device(); matrix<float> truth = mat(a)*mat(b); cuda::gemm(0, c, 1, a, false, b, false); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(3,4), b(4,4), c(3,4); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+mat(a)*mat(b); cuda::gemm(2, c, 1, a, false, b, false); DLIB_TEST(get_rect(truth) == get_rect(mat(c))); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(4,3), b(4,4), c(3,4); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+trans(mat(a))*mat(b); cuda::gemm(2, c, 1, a, true, b, false); DLIB_TEST(get_rect(truth) == get_rect(mat(c))); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(4,3), b(4,5), c(3,5); c = 1; a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = 2*mat(c)+trans(mat(a))*mat(b); cuda::gemm(2, c, 1, a, true, b, false); DLIB_TEST(get_rect(truth) == get_rect(mat(c))); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } { resizable_tensor a(4,3), b(4,5), c(3,5); c = std::numeric_limits<float>::infinity(); a = matrix_cast<float>(gaussian_randm(a.num_samples(),a.size()/a.num_samples())); b = matrix_cast<float>(gaussian_randm(b.num_samples(),b.size()/b.num_samples())); matrix<float> truth = trans(mat(a))*mat(b); cuda::gemm(0, c, 1, a, true, b, false); DLIB_TEST(get_rect(truth) == get_rect(mat(c))); DLIB_TEST(max(abs(truth-mat(c))) < 1e-6); } } } a; } #endif // DLIB_USE_CUDA