Sha256: 6368722fb49665cd972012d41961926c594ccf75e1ad16fabaad7ef8c6dd2110

Contents?: true

Size: 1.07 KB

Versions: 3

Compression:

Stored size: 1.07 KB

Contents

require "dnn"
require "dnn/datasets/mnist"
# If you use numo/linalg then please uncomment out.
# require "numo/linalg/autoloader"

include DNN::Models
include DNN::Layers
include DNN::Optimizers
include DNN::Losses
MNIST = DNN::MNIST

x_train, y_train = MNIST.load_train
x_test, y_test = MNIST.load_test

x_train = Numo::SFloat.cast(x_train).reshape(x_train.shape[0], 784)
x_test = Numo::SFloat.cast(x_test).reshape(x_test.shape[0], 784)

x_train /= 255
x_test /= 255

y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat)
y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat)

class MLP < Model
  def initialize
    super
    @l1 = Dense.new(256)
    @l2 = Dense.new(256)
    @l3 = Dense.new(10)
    @bn1 = BatchNormalization.new
    @bn2 = BatchNormalization.new
  end

  def call(x)
    x = InputLayer.(x)
    x = @l1.(x)
    x = @bn1.(x)
    x = ReLU.(x)
    x = @l2.(x)
    x = @bn2.(x)
    x = ReLU.(x)
    x = @l3.(x)
    x
  end
end

model = MLP.new

model.setup(Adam.new, SoftmaxCrossEntropy.new)

model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])

Version data entries

3 entries across 3 versions & 1 rubygems

Version Path
ruby-dnn-0.14.2 examples/mnist_define_by_run.rb
ruby-dnn-0.14.1 examples/mnist_define_by_run.rb
ruby-dnn-0.14.0 examples/mnist_define_by_run.rb