# About It's an implementation of [Jaro-Winkler distance](http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) algorithm, it uses C extension and will fallback to pure Ruby version in JRuby. Both of them supports UTF-8 string. # Installation ``` gem install jaro_winkler ``` # Usage ```ruby require 'jaro_winkler' JaroWinkler.distance "MARTHA", "MARHTA" # => 0.9611 JaroWinkler.distance "MARTHA", "marhta", ignore_case: true # => 0.9611 JaroWinkler.distance "MARTHA", "MARHTA", weight: 0.2 # => 0.9778 # Force the strategy JaroWinkler.c_distance "MARTHA", "MARHTA" # C extension JaroWinkler.r_distance "MARTHA", "MARHTA" # Pure Ruby ``` ## Options Name | Type | Default | Note ----------- | ------ | ------- | ------------------------------------------------------------------------------------------------------------ ignore_case | boolean | false | All lower case characters are converted to upper case prior to the comparison. weight | number | 0.1 | A constant scaling factor for how much the score is adjusted upwards for having common prefixes. threshold | number | 0.7 | The prefix bonus is only added when the compared strings have a Jaro distance above the threshold. adj_table | boolean | false | The option is used to give partial credit for characters that may be errors due to known phonetic or character recognition errors. A typical example is to match the letter "O" with the number "0". ## Default Adjusting Table ``` ['A', 'E'], ['A', 'I'], ['A', 'O'], ['A', 'U'], ['B', 'V'], ['E', 'I'], ['E', 'O'], ['E', 'U'], ['I', 'O'], ['I', 'U'], ['O', 'U'], ['I', 'Y'], ['E', 'Y'], ['C', 'G'], ['E', 'F'], ['W', 'U'], ['W', 'V'], ['X', 'K'], ['S', 'Z'], ['X', 'S'], ['Q', 'C'], ['U', 'V'], ['M', 'N'], ['L', 'I'], ['Q', 'O'], ['P', 'R'], ['I', 'J'], ['2', 'Z'], ['5', 'S'], ['8', 'B'], ['1', 'I'], ['1', 'L'], ['0', 'O'], ['0', 'Q'], ['C', 'K'], ['G', 'J'], ['E', ' '], ['Y', ' '], ['S', ' '] ``` # Why This? There is also another similar gem named [fuzzy-string-match](https://github.com/kiyoka/fuzzy-string-match) which both provides C and Ruby version as well. I reinvent this wheel because of the naming in `fuzzy-string-match` such as `getDistance` breaks convention, and some weird code like `a1 = s1.split( // )` (`s1.chars` could be better), furthermore, it's bugged (see tables below). # Compare with other gems | jaro_winkler | fuzzystringmatch | hotwater | amatch --------------- | ------------ | ---------------- | -------- | ------ UTF-8 Suport | **Yes** | Pure Ruby only | No | No Windows Support | **Yes** | | No | **Yes** Adjusting Table | **Yes** | No | No | No Native | **Yes** | **Yes** | **Yes** | **Yes** Pure Ruby | **Yes** | **Yes** | No | No Speed | Medium | Fast | Medium | Slow Bug Found | **Not Yet** | Yes | **Not Yet** | Yes For `Bug Found`, I made a rake task to build the table below, the source code is in `Rakefile`: str_1 | str_2 | origin | jaro_winkler | fuzzystringmatch | hotwater | amatch --- | --- | --- | --- | --- | --- | --- "henka" | "henkan" | 0.9667 | 0.9667 | **0.9722** | 0.9667 | **0.9444** "al" | "al" | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 "martha" | "marhta" | 0.9611 | 0.9611 | 0.9611 | 0.9611 | **0.9444** "jones" | "johnson" | 0.8324 | 0.8324 | 0.8324 | 0.8324 | **0.7905** "abcvwxyz" | "cabvwxyz" | 0.9583 | 0.9583 | 0.9583 | 0.9583 | 0.9583 "dwayne" | "duane" | 0.84 | 0.84 | 0.84 | 0.84 | **0.8222** "dixon" | "dicksonx" | 0.8133 | 0.8133 | 0.8133 | 0.8133 | **0.7667** "fvie" | "ten" | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 - The origin result is from the [original C implementation by the author of the algorithm](http://web.archive.org/web/20100227020019/http://www.census.gov/geo/msb/stand/strcmp.c). - Test data are borrowed from [fuzzy-string-match's rspec file](https://github.com/kiyoka/fuzzy-string-match/blob/master/test/basic_pure_spec.rb). ## Benchmark ### Pure Ruby | user | system | total | real ---------------- | --------- | -------- | --------- | ------------ jaro_winkler | 12.750000 | 0.030000 | 12.780000 | ( 12.782842) fuzzystringmatch | 16.240000 | 0.030000 | 16.270000 | ( 16.287380) - jaro_winkler (1.2.3) - fuzzy-string-match (0.9.6) ### Native | user | system | total | real ---------------- | -------- | -------- | -------- | ------------ jaro_winkler | 0.390000 | 0.000000 | 0.390000 | ( 0.392408) fuzzystringmatch | 0.150000 | 0.000000 | 0.150000 | ( 0.151552) hotwater | 0.320000 | 0.000000 | 0.320000 | ( 0.317740) amatch | 0.960000 | 0.010000 | 0.970000 | ( 0.964803) - jaro_winkler (1.2.3) - fuzzy-string-match (0.9.6) - hotwater (0.1.2) - amatch (0.3.0) # Todo - Custom adjusting word table. - If the adjusting table is ASCII encoded, use dense matrix instread of sparse matrix to speed up.