# = statsample.rb - # Statsample - Statistic package for Ruby # Copyright (C) 2008-2009 Claudio Bustos # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # #$:.unshift(File.dirname(__FILE__)) require 'matrix' require 'distribution' require 'dirty-memoize' gem 'reportbuilder','~>1.0' require 'reportbuilder' class Numeric def square ; self * self ; end end class String def is_number? if self =~ /^-?\d+[,.]?\d*(e-?\d+)?$/ true else false end end end class Array # Recode repeated values on an array, adding the number of repetition # at the end # Example: # a=%w{a b c c d d d e} # a.recode_repeated # => ["a","b","c_1","c_2","d_1","d_2","d_3","e"] def recode_repeated if self.size!=self.uniq.size # Find repeated repeated=self.inject({}) {|a,v| (a[v].nil? ? a[v]=1 : a[v]+=1); a }.find_all{|k,v| v>1}.collect{|k,v| k} ns=repeated.inject({}) {|a,v| a[v]=0;a} self.collect do |f| if repeated.include? f ns[f]+=1 sprintf("%s_%d",f,ns[f]) else f end end else self end end end def create_test(*args,&proc) description=args.shift fields=args [description, fields, Proc.new] end #-- # Test extensions begin require 'gettext' rescue LoadError def bindtextdomain(d) #:nodoc: d end # Bored module module GetText #:nodoc: def _(t) t end end end # Library for statistical analysis on Ruby # # * Classes for manipulation and storage of data: # * Module Statsample::Bivariate provides covariance and pearson, spearman, point biserial, tau a, tau b, gamma, tetrachoric (see Bivariate::Tetrachoric) and polychoric (see Bivariate::Polychoric) correlations. Include methods to create correlation and covariance matrices # * Multiple types of regression on Statsample::Regression # * Factorial Analysis algorithms on Statsample::Factor module. # * Dominance Analysis. Based on Budescu and Azen papers.link[http://psycnet.apa.org/journals/met/8/2/129/]. # * Module Statsample::Codification, to help to codify open questions # * Converters to import and export data from databases, csv and excel files. # * Module Statsample::Crosstab provides function to create crosstab for categorical data # * Reliability analysis provides functions to analyze scales. # * Module Statsample::SRS (Simple Random Sampling) provides a lot of functions to estimate standard error for several type of samples # * Interfaces to gdchart, gnuplot and SVG::Graph # module Statsample begin require 'rbgsl' def self.has_gsl? true end rescue LoadError def self.has_gsl? false end end VERSION = '0.10.0' SPLIT_TOKEN = "," autoload(:Database, 'statsample/converters') autoload(:Anova, 'statsample/anova') autoload(:Combination, 'statsample/combination') autoload(:Permutation, 'statsample/permutation') autoload(:CSV, 'statsample/converters') autoload(:PlainText, 'statsample/converters') autoload(:Excel, 'statsample/converters') autoload(:GGobi, 'statsample/converters') autoload(:SPSS, 'statsample/converter/spss') autoload(:Histogram, 'statsample/histogram') autoload(:DominanceAnalysis, 'statsample/dominanceanalysis') autoload(:HtmlReport, 'statsample/htmlreport') autoload(:Mx, 'statsample/converters') autoload(:Resample, 'statsample/resample') autoload(:SRS, 'statsample/srs') autoload(:Codification, 'statsample/codification') autoload(:Reliability, 'statsample/reliability') autoload(:Bivariate, 'statsample/bivariate') autoload(:Multivariate, 'statsample/multivariate') autoload(:Multiset, 'statsample/multiset') autoload(:StratifiedSample, 'statsample/multiset') autoload(:MLE, 'statsample/mle') autoload(:Regression, 'statsample/regression') autoload(:Test, 'statsample/test') autoload(:Factor, 'statsample/factor') autoload(:Graph, 'statsample/graph') class << self # Load a object saved on a file. def load(filename) if File.exists? filename o=false File.open(filename,"r") {|fp| o=Marshal.load(fp) } o else false end end # Create a matrix using vectors as columns. # Use: # # matrix=Statsample.vector_cols_matrix(v1,v2) def vector_cols_matrix(*vs) # test size=vs[0].size vs.each{|v| raise ArgumentError,"Arguments should be Vector" unless v.instance_of? Statsample::Vector raise ArgumentError,"Vectors size should be the same" if v.size!=size } Matrix.rows((0...size).to_a.collect() {|i| vs.collect{|v| v[i]} }) end # Returns a duplicate of the input vectors, without missing data # for any of the vectors. # # a=[1,2,3,6,7,nil,3,5].to_scale # b=[nil,nil,5,6,4,5,10,2].to_scale # c=[2,4,6,7,4,5,6,7].to_scale # a2,b2,c2=Statsample.only_valid(a,b,c) # => [#, # #, # #] # def only_valid(*vs) i=1 h=vs.inject({}) {|a,v| a["v#{i}"]=v;i+=1;a} ds=Statsample::Dataset.new(h).dup_only_valid ds.vectors.values end # Cheap version of #only_valid. # If any vectors have missing_values, return only valid. # If not, return the vectors it self def only_valid_clone(*vs) if vs.any? {|v| v.has_missing_data?} only_valid(*vs) else vs end end end module Util # Reference: http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm def normal_order_statistic_medians(i,n) if i==1 u= 1.0 - normal_order_statistic_medians(n,n) elsif i==n u=0.5**(1 / n.to_f) else u= (i - 0.3175) / (n + 0.365) end u end end module Writable def save(filename) fp=File.open(filename,"w") Marshal.dump(self,fp) fp.close end end # Provides basic method to generate summaries module Summarizable include GetText bindtextdomain("statsample") def summary(method=:to_text) ReportBuilder.new(:no_title=>true).add(self).send(method) end end module STATSAMPLE__ #:nodoc: end end #-- begin require 'statsamplert' rescue LoadError module Statsample OPTIMIZED=false end end require 'statsample/vector' require 'statsample/dataset' require 'statsample/crosstab' require 'statsample/matrix'